S

-« BERKELEY LAB
freeeee w
LAWRENCE BERKELEY NATIONAL LABORATORY

f“" U.S. DEPARTMENT OF
o)

ENERGY

Application Structure Aware Resiliency and
Cost Model for Differentiated Recovery

Anshu Dubey

April 28, 2015

Fault Detection

J A recent idea (definitely not implemented)
) Applications know the conservative bounds for change in the values
between time-steps
) The space of floating point numbers that falls within the acceptable
values is orders of magnitude smaller than that all floating point
numbers of the given precision
J A simple check for |x,—x, ;| can determine if the result belongs in the
valid space
) Both the quantities are in cache so minimal cost
J If the result is dubious, recompute x,
) If the answer is different, initiate rollback within the patch
1 If the answer is the same, possibly the simulation is going badly
) Apply more diagnostics
1 Abort if necessary

In either situation this approach could reduce wasteful
computations

Why Structure Aware Resiliency

It does not appear that rollback recovery can be eliminated
as an option for resiliency

) Traditionally - checkpoint the entire state and reconstruct for
restart
) Application determined state for transparent reconstruction
) For some types of faults that might still be the right solution

) Full state checkpoint is still an overhead
Confining the recovery to a section of the problem domain can provide

considerable cost saving — idea behind containment domains
) This talk is not about containment domain, though they can be used

Differentiated Recovery: Four Simple
Ideas

1 See if there is any hierarchy to be exploited

) ldentify granularities in the application

) Map fault types to granularities

) Determine the right amount of state to be saved at each granularity
Necessary to have knobs for tuning and therefore cost models

Also necessary to have differentiated state saving provided by some
software that gives control and flexibility to the application

GVR - Global View Resilience

Parallel Computation proceeds from | |Phases create new
phase to phase

" ==
BT INIT

Rollback & recompute if App-semantics
uncorrected error based recovery

Il

J Two key ideas

J Multi-version, multi-stream distributed arrays: preserves application critical data,
enables flexible recovery from complex errors with fine-grain, localized manner

) Open resilience: cross-layer partnership for error handling, with unified error
handling interface

We exploit the flexibility in GVR interface to implement our differentiated
recovery strategy

AMR Basics

tn+1
sync

sync

sync

refinement
level

] Block Structured Local Refinement

J Refined regions are organized into logically-rectangular patches

J Refined grids are dynamically created and destroyed
J Refinement is performed in time as well as in space

) The depth of hierarchy depends upon the range of scales

] Mostly solve hyperbolics, some elliptic and some PIC

level

level

What do we have going for us ?

ﬁ] AMR needs to do load
i balance dynamically
i // ///] AMR has hierarchy
L L LS . .
ST 77 J Alevel is a fairly self
///// contained unit of

5 / —7 / j / computation
I I) Not all levels will always
/ / / have boxes on all
// / 3 / processors

Exploiting Granularities and Encapsulations

A Level provides the coarsest granularity in the framework
Convention — level below is coarser, level above is finer

J A level defines data on unions of rectangles

A level can do its own restart

Save meta-data,
offsets for each box
physical data of each
box, in array for a
level

__/‘—'/

Array 1 Array 2

Exploiting Granularities and Encapsulations

The next layer of granularity is box within a level

) Box with its surrounding halo of ghost cells is a completely
defined computational region

) All boxes mapped to a processor may not be at the same
level

The way we construct arrays gives us box level
granularity for free

Save meta-data,
offsets for each box
physical data of each box, in array for a level

Failure Scenarios and Recovery Modes

Resource failure, recovery at one or more levels, or
a full restart

Data corruption, recovery at one level

Meta-data corruption: read in the meta-data,
rollback may not be needed

Data corruption — recovery at multiple levels
Cascading effect- recovery may be needed in all the
finer levels (may not always be needed though)

Cost Model

Definitions of the terms used in
the cost model:

R- ratio between two
consecutive levels

Tconﬁg

alloc”
array,
T oanioc — fime for freeing and
reallocating an array
T ,.-time to increment a version,
T ,~time to gather and put data
mto the array for the whole
level
T__.-time to get data from GDS

get
for the whole level

-time to configure a level
time for allocating an

Tiever (1) = Tver/realloc(i) + Tput(i)

Tsave = 2 RiXTlevel (l)
=0

Tsave(global) = z Tieper (1)
=0

Tiost = z RiXTstep (l)
iI=m

N_
Treconfig — Z Tconfig () + Tget(i)
i=m

Trecovery — Tlost + Tsave + Treconfig

Using the Cost Model

Example : R=2, Levels=10 (including coarsest level)
For simplicity assume T, and T, are the same for all levels

In case of resource failure

For global snapshot per time step
Teove=10XT,,,.

TZS\? NxT (where N is all timesteps computed since save)

For non-global snapshots saving per time step for every level
Tsave= 1024XTeve/.

Tiost= MXT 0, (m is the number of affected levels), or
Tiost = 2(10'”7sztep (where n is the coarsest level affected)

In case of data corruption T, is unchanged
For global snapshot
T,,s: may be reduced if corruption is in level n, and occurs within
the first timestep of level n-1 (with some caveats)

For non-global snapshots Tiost 1 Tstep

Time (sec)
N w B (O]
o o o o

[EEN
o o

Preliminary Measurements

Comparison beween file and GVR for saving state

128

1024

Recovery as a percentage of run time

—fault at m=0 —fault at m=3

snapshot
—write to file —write to GDS
50
.540
»30
£ 20
F 10
0
128 256 512
Processors
Tlost for different values of m
—m=0 —m=1 —m=2 —m=3
5
ol
©
£ 3
(]
22
[V]
o
1
0
256 512 1024 128
Processors

256 512
Processors

1024

Conclusions and Future Work

) Examining the structure and granularities in the
application can lead to differentiated recovery, which
can be significantly less costly

) With a strategy, knobs, and the corresponding cost
model one can examine the trade-offs

1 We need to generalize this work

. Definitely follow up on the fault detection idea

