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RAWR! 

3  
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Never say die 
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● Certain parts of your system do everything they can to 
never do the wrong thing 

● Hardware is full of error handling capabilities 
●  See Session 1 talks 

● So is the OS 
●  e.g., Linux vfs_read() ~60% source code is for handling errors 

● Mature middleware is less so, but still pretty good 
●  e.g., Most MPICH calls have an error exit path 



More
Asynchrony!
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Crazy Idea #0: Admit you have a problem 
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●  Five randomly chosen DOE mini apps 
●  SLOC devoted to error handling can be approximated by zero 

● But you can’t blame apps 
●  MPI spec says nothing is guaranteed after return with error 
●  OpenSHMEM doesn’t have return codes 

●  Maybe they’re just being more realistic 

● But you can’t blame communication libraries either 
●  Any error they can’t handle themselves, no one really could… until 

recently 
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Outline 
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● Not So Crazy Idea #1 
● Not So Crazy Idea #2 
● Not So Crazy Idea #3 
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NSCI #1: Write a portable program 
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Brief interruption 

9 

 
 
 
 
 

I’m not here to tell you what programming model to use 
This is a very personal decision 
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NSCI #1: Write a portable program 
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●  Fault tolerance solutions are going to be tied to the 
architecture (duh) and system software 

●  Implementing, testing and/or debugging is not to scale 
●  e.g., NERSC Cori phase 1 comprised of Haswell processors, not KNL 

Portability is more important than ever 
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NSCI #1: Resource management 
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● Cray Environment: 
●  aprun launcher will restart the (shrunken) job after node failure 

● Slurm: 
●  New options for fault tolerance 
●  e.g., add a node OR give me more time 

Workload managers are part of the fault tolerance solution 
But they’re currently not part of the portability solution 
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NSCI #1: Challenges 
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●  There are a few different workload managers 
●  And they keep changing the options 
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NSCI #1: Challenges 
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●  There are a few different workload managers 
●  And they keep changing the options 

● Workload managers are often customized for a site 
●  Policy implementations, preferred terminology, etc. 

● Can we find common idioms? 
● Can we standardize? 
●  ??? 
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NSCI #1: Recipe for success 
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Application programmers: 

Write a portable program 

Software providers: 
Make resource management part of your portability story 
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NSCI #2: Understand your memory model 
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● A Memory Consistency Model (MCM) defines the order in 
which memory operations appear to execute 

● Dekker’s algorithm (1965-ish) 

●  This stopped working on most CPUs ~30 years ago 
●  Today there are half a dozen ways to make this work 

●  On x86 most are equivalent from a performance standpoint 

flag1 = 0xE; 
if (flag2 == 0xF) { 
   // 1 wins! 
   … 
} 

thread 1 

flag2 = 0xE; 
if (flag1 == 0xF) { 
   // 2 wins! 
   … 
} 

thread 2 

…the result of any execution is the same as if the operations of 
all the processors was executed in some sequential order, and 
the operations of each individual processor appear in this 
sequence in the order specified by its program. 

sequential consistency 
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Brief interruption #2 
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If you have a couple hours to kill… 
 
 

Watch Herb Sutter’s talk 
 

atomic<> Weapons: 
The C++11 Memory Model and Modern Hardware 
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NSCI #2: Relaxed consistency 
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● Compilers and hardware are conspiring run a completely 
different program than the one you wrote 

● Relaxed consistency is about exposing yourself their 
trickeries, in exchange for performance (maybe) 

● Herb Sutter’s advice (my words): 

Don’t use relaxed consistency unless you’re special 

●  This community is special 
●  If there’s something that can improve performance, they’ll try it 
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NSCI #2: Should you care?  
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● MPI rank on every core: No 
●  There are people working on reducing the overhead of doing this 

● MPI+X: Probably 
●  Depends on X and how you use it 

● PGAS/APGAS/SHMEM: Yes 
●  In fact, you’ve been caring for a while 

● Dynamic task-based programming models: Probably 

The runtimes of all these care 
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NSCI #2: Do I need to care for fault recovery? 
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●  If yes on previous slide, then yes 

● SDC recovery techniques can access shared data 
●  Depending on your programming model, you may have to do 

additional synchronization 
●  Or use techniques that can happen at existing synchronization points 
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NSCI #2: Example 
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● One-sided programming models decouple 
synchronization from communication: 

 
shmem_put64(dest0, src0, len, pe); 
 
 
shmem_put64(dest1, src1, len, pe); 
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NSCI #2: Example 
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● One-sided programming models decouple 
synchronization from communication: 

// When is this put complete at pe? 
shmem_put64(dest0, src0, len, pe); 
 
// What about this put? 
shmem_put64(dest1, src1, len, pe); 
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NSCI #2: Example 
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● One-sided programming models decouple 
synchronization from communication: 

 
●  If you care, say for SDC, synchronize manually: 

// When is this put complete at pe? 
shmem_put64(dest0, src0, len, pe); // I have no idea! 
 
// What about this put? 
shmem_put64(dest1, src1, len, pe); // Me neither! 

shmem_put64(dest0, src0, len, pe); 
shmem_put64(dest1, src1, len, pe); 
shmem_quiet(); // Both puts guaranteed to be visible 
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NSCI #2: Challenges 
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● MCMs are hard 
●  If anyone in the audience can explain memory_order_consume, 

please see me afterwards 

●  It’s not always clear you get benefit from using a more 
relaxed model 
●  e.g., change communication characteristics 
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NSCI #2: Recipe for success 
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Application programmers: 
Understand your MCM (if you need to) 

Software providers: 
Specify a MCM that can be implemented efficiently 
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NSCI #3: Exceptions 
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NSCI #3: Exceptions 
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● Don’t (at least for a language like C++) 
●  Difficult to write good exception handling code (across threads?) 
●  Not practical 

● See Google’s C++ Style guide: 
●  https://google-styleguide.googlecode.com/svn/trunk/

cppguide.html#Exceptions 
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Summary 
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NSCI #1: Write a portable program 
●  Portability continues to be important 
●  Resource management needs to be part of the portability story 

NSCI #2: Understand your MCM 
●  An MCM is your friend, use it judiciously 

NSCI #3: Exceptions are impractical 
●  Don’t use them (or rewrite all your software in Java) 
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