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Some things are beyond our control! 

Courtesy Takahashi Kaito (SII Nanotechnology Inc.) 
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The eras of computing 
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Need for reliability 
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Feature size scaling 

§ Impact of feature size scaling 
§ Charge discretization 
§ Random manufacturing defects 
§  Increasing electric field 
§ Thin gate oxides 
§  Interface defects at Si/SiON interface 
§ Metal defects 
§  Susceptibility to soft errors 
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CMOS Switches:  19xx - 2015 
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Devices 2015 – 2025 
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Technology scaling overview 
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FinFET 
LELE 

Technology complexity inflection point? 
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Technology complexity inflection point? 
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Future technology  
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LE	


Future transistors 
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LE	


Future technology:  patterning  
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Device lifetime and failure rate 

1 – 20 weeks 

Normal lifetime 
Early life 
failures Wearout 

3 – 10 years time 

Fa
ilu

re
 r

at
e 

Increasing  
manufacturing  

defects 

Increasing  
transient 
errors 

Acceleration 
of aging 

phenomena 



18 Salishan Conference on High-Speed Computing, 2015 Salishan Conference on High-Speed Computing, 2015 

Unreliable transistors – 3 phases 

Gate to source shorts 
Insulator cracks 
Thin oxide defects 
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Soft error: Impact on circuits 
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Big system reliability 
§  “Always on” system are especially vulnerable to soft error 

§  Vulnerability further increases substantially at low supply voltage 

§ As technology scales down, number of cores scales up 
§  Rates of failures increases: From 2 weeks (current) to 1 hour 

Source: Draft ICiS 2012 Reliability Workshop 



21 Salishan Conference on High-Speed Computing, 2015 Salishan Conference on High-Speed Computing, 2015 

SRAM upsets 
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FIT rate in 28nm: SRAM 
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Soft error mitigation - SRAM 

§  ECC with physical interleaving reduces the FIT rate to ~0 
§  Physical interleaving: multi cell error à single bit error 
§ Temporal scrubbing to correct single bit errors 
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SoC soft error trends 
Bitcell SER FIT rate per node 
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Are all bits equally vulnerable? 
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Soft error in logic 
§ No “cheap” way to protect - spatially distributed bits 

§ Vulnerability factor analysis helps to identify critical ones 
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Error injection flow 
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Fault injection results 

The	  Key	  message	  here	  is	  that	  even	  though	  most	  faults	  vanish,	  we	  s6ll	  need	  to	  worry	  about	  the	  remaining	  4-‐8%	  of	  faults.	  
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Cross layer resilience approach 
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FinFET and soft error rate 

SER = Adiff e(-Qcrit/Qcoll) 
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Random telegraph noise (RTN) 

§ Discrete level current fluctuation with time 
§ Caused by charge trapping/de-trapping in dielectric 
§ Behavior is results in 1/f noise for large FETs 

Drain current D
ra

in
 c

ur
re

nt
 

Time (s) 

10% 

Source: K. Takeuchi, Renesas, VMC 2011 
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RTN scaling 

RTN scales faster (1/LW) as opposed to other variability phenomena which scale as 1/(LW)1/2 
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Phase 3: Reliability towards end of life 

1 – 20 weeks 3 – 10 years time 
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Wearout/aging 
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Bias Temperature Instability (BTI) 

§ Reliability concern at Si-SiON interface 
§ Gradual shift in transistor parameters with time 
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Wearout: Impact on circuits 

Combinational State-holding cells 
(bit cells, flip-flops) 

§  Fmax ê 
§ Timing failure as circuits age 

D Q 

clk 

§  Static Noise Margin ê 
§ Read and write stability ê 
§  Parametric yield loss 
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Delay Degradation ≠ Failure 

But there could be hold errors due to aging in clock path 
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CPU workload dependent aging: A case study 

§ Mid-size ARM CPU 
§  > 100K instances, > 10K sequentials 
§  Large enough to be interesting 
§  Small enough for rapid turnaround time 

 

§  Simulation settings 
§   Vdd = 0.9V,  Temp = 105 oC, Lifetime = 3 years 
§  CP 28LP standard-cell library 
§  >1K cell-topologies, >10K timing-arcs 

 

§   NBTI and PBTI aging model 
§   RD: Reaction-Diffusion [Gielen 11, Zheng 09] 
§   TD: Trapping-Detrapping [Velamala 12] 
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Instance based simulation flow 

For more details: 
Workload Dependent NBTI and PBTI Analysis for a  sub-45nm Commercial Microprocessor, Intl. Reliability Physics Symposium (IRPS), 2013. 
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Block and Path Timing Degradation 

§ Dhrystone workload 
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Path Rank Analysis 
§ Rank paths in fresh and aged design, sorted by slack 
§ Non-critical paths can become critical and vice versa 

Path rank 
% Timing 

Degradation Fresh Aged 
(Dhrystone) 

1 14084 7.64 
2 9781 7.94 
3 9329 8.02 
4 12345 7.87 
5 6220 8.31 
6 36672 7.16 
7 7771 8.19 
8 11580 7.96 
9 28975 7.40 
10 20054 7.66 

Path rank 
% Timing 

Degradation Aged 
(Dhrystone) Fresh 

1 179394 15.61 
2 145042 15.41 
3 134419 15.18 
4 1413427 17.57 
5 272323 15.67 
6 224034 15.46 
7 331934 15.76 
8 275422 15.56 
9 481425 16.06 
10 208561 15.24 
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Workload Power-State Trace 

Workload 
Power-State (Active / Sleep)  

vs. Time 
Average  

Active Time 

mp3 0.03 

web-browse 0.07 

3D rendering 0.24 

Dhrystone 0.40 

video H264 0.54 
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Workload-Dependent Processor Aging 

Workload 

% Timing Degradation 

Switching-
activity Power-state Switching-activity and 

power-state 
RD TD RD TD RD TD 

mp3 10.0 6.3 3.6 2.5 2.3 1.6 
web-browse 10.6 7.3 6.1 4.2 4.1 2.8 
3D rendering 12.3 8.4 6.9 4.7 5.4 3.7 

Dhrystone 11.2 7.7 10.1 6.9 7.3 5.0 
video H264 12.5 8.5 11.4 7.8 9.1 6.2 
worst-case 15.6 10.7 15.6 10.7 15.6 10.7 

RD: Reaction-Diffusion model 
TD: Trapping-Detrapping model 
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Conclusions 

§ Reliability is more critical than ever for RAS critical designs – Servers, HPC etc. 
 

§  Errors can be mitigated at devices, circuits, architecture or even software level 
§  Lots of opportunities to design reliable systems from ground up 

 

§ As we scale, some things are becoming worse, some better 
§  BTI, TDDB, EM é 
§  SER ê 

 

§  Future technology challenges 
§  Need to keep an eye on the evolution of future devices 
§  Quantification of wearout impact on CPU PPA scaling 
§  RTN scaling in the era of new devices (nanowires, compound  

semiconductors, CNT) 
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Fin 


