
This is not Your Parents’ Fortran:

A Scalable, Parallel, Functional OO PDE Solver

Damian Rouson

The Bottom Line
In 1 academic quarter, I teach beginning graduate students how to write a

Parallel

Functional

Object-Oriented

PDE solver using high-level mathematical abstractions,

Scaling beyond 16,000 cores with nearly 90% parallel efficiency,

Using either of 2 commercially released compilers or one pre-release open-source compiler,

With no reliance on libraries external to the language (e.g., no OpenMP or MPI in the source)

With zero chance of common beginner mistakes (e.g., no memory leaks or dangling pointers).

Fortran’s Image

http://longstreet.typepad.com/thesciencebookstore/
computer_techhistory/

http://www.computersciencelab.com/	

ComputerHistory/HistoryPt4.htm

http://www.clemson.edu/caah/history/facultypages/
PamMack/lec122sts/computers.html

http://www.computersciencelab.com/	

ComputerHistory/HistoryPt4.htm

00-10

Fortran’s Reality

Source: Bull, M., Guo, X., Ioannis Liabotis, I. (Feb. 2011) Applications and user
requirements for Tier-0 systems, PRACE Consortium.

00-11

D7.4.1 Applications and user requirements for Tier-0 systems

PRACE-1IP - RI-261557 22.02.2011 41

Question 31: Which programming models and languages do you use for code development?
Please select one or more from the following list.

Response rate: 78%

Figure 42: Summary of responses to Question 31.

Comment: Languages mentioned by more than one user in the “other” category were Matlab,
R, CUDA, Unix shell script and awk. There was a zero response for UPC and Fortress. It is
interesting to note that the sum of responses for C and C++ outnumber those for Fortran.

0 50 100 150 200 250

Co-array Fortran

Chapel

Java

Other

Perl

Python

C++

C

Fortran

Response Count

Fortran’s Future

Source: Stitt, T. and T. Robinson (2008) A Survey on Training and Education Needs for Petascale Computing, PRACE Consortium
Partners (http://www.tinyurl.com/PRACE-survey-2008). 00-12

�We#don�t#believe#that#…#Joe#the#
programmer#should#have#to#deal#with#

parallelism#in#an#explicit#way�#
Kunle&Olukotun#

Going parallel should not mean writing low-level parallel
code, just as going high-performance need not require
assembly language (as in the good old days) compilers
should help, even though, this is a difficult task.
A programming model that presents parallelism to the
programmer in a simple yet powerful way can achieve
surprisingly good results with the proper compiler
support. While at the same time comfortably outperform
what most novice programmers would produce with
great effort when forced to exercise direct control. !

Compiler Support

“x” -> a released version supports all features employed in this talk.

“o” -> a pre-release version supports all features employed in this talk.

Compiler OOP+Functional Parallel
Cray

 x x
Intel x x
GNU x o
IBM x

Portland Group x
NAG x

Parallel Functional OOP in Modern Fortran

00-6

!

OOP —> Functional —> Parallel

Parallel programming (Fortran 2008)

Object-oriented programming (Fortran 2003)

Functional Programming (Fortran 95)

u_t = -(.grad.p)/rho + nu*(.laplacian.u) -(u.dot.(.grad.u))	

User-defined, purely functional operators

Distributed objects containing coarrays

“Do Concurrent”

Supporting compiler technologies:

Gfortran: SIMD via front-end pragmas

Intel: Vectorization (AVX)

program main  
 implicit none"
 integer, parameter :: num_particles=10,num_dimensions=3"
 integer :: stride"
 real :: V(num_particles,num_dimensions),response_time(num_particles)"
 V=100."
 stride = input_from_file()"
 do concurrent(particle=1:num_particles:stride)"
 V(particle,:) = &"
 V(particle,:) - dt*V(particle,:)/response_time(particle) "
 ! Can also call pure procedures here"
 end do"
end program!

program main!
 use cartesian_tensor_class, only : cartesian_tensor!
 use scalar_field_class, only : scalar_field!
 implicit none!
 type(cartesian_tensor) :: u!
 real :: t=0.,dt=0.1,t_final=1.0,nu=0.01!
 type(scalar_field) :: initial(3)!
 u=cartesian_tensor(initial,rank=1,space_dim=3,covariant=[.true.])!
 do while(t<t_final)!
!
!
 !
 u = u + dt*(nu*(.laplacian.u) - (u.dot.(.grad.u)))!
 t = t + dt!
 end do!
end program!

Case Study:
Morfeus

A coordinate-free PDE solver framework:

~un+1 = ~un +�t
�
⌫r2~un � ~un ·r~un

�

Asynchronous Expression
Evaluation

nu!

u(1)! u(2)! u(3)!

operator(+)!

operator(+)! operator(*)! operator(*)!operator(*)!

operator(*)!

operator(+)!

operator(+)!

operator(-)!

assignment(=)!

u(1)%yy()! u(1)%zz()!u(1)%xx()! u(1)%x()! u(1)%y()! u(1)%y()!

As
yn
ch
ro
no

us
!

ex
ec
u-

on
!

Sy
nc
hr
on

iza
-o

n!
!

Pure function

Impure function

Legend

 nu*(u(1)%xx() + u(1)%yy() + u(1)%zz()) !
 - (u(1)*u(1)%x() + u(2)*u(1)%y() + u(3)*u(1)%z())!

1D Burgers Solver Load Balance

Results: 1D Burgers Equation Weak Scaling

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

0# 5000# 10000# 15000#

Effi
ci
en

cy
(

Number(of(Images(

Weak#Scaling#

Fortran Philosophy

!

“Communicate properties, not optimizations.” 

Conclusions

Fortran is now a PGAS language with a platform-agnostic, scalable parallel
programming model.

Modern Fortran supports multiple programming paradigms that fully
integrate with its PGAS features: array programming, functional
programming, object-oriented programming.

Very broad support for OOP/Functional programming features exists.

Parallel programming feature support is growing.

Productivity for beginners is high.

References

Haveraaen, M., K. Morris, and D. W. I. Rouson (2013) “High-performance
design patterns for modern Fortran,” First International Workshop on
Software Engineering for High Performance Computing in Computational
Science and Engineering, Denver, Colorado, USA. November 22.

Radhakrishnan, H., D. W. I. Rouson, K. Morris, S. Shende, and S. C. Kassinos
(2013) “Test-driven coarray parallelization of a legacy Fortran application,”
First International Workshop on Software Engineering High Performance
Computing in Computational Science and Engineering, Denver, Colorado, USA.
November 22.

Acknowledgements

Karla Morris, Sandia National Laboratories

Hari Radhakrishnan and Stavros Kassinos, University of Cyprus

Magne Haveraaen, University of Bergen

Jim Xia, IBM

Xiaofeng Xu, GM

Sameer Shende, University of Oregon

