This is not Your Parents’ Fortran:
A Scalable, Parallel, Functional OO PDE Solver

Damian Rouson

STANFORD

UNIVERSITY
CENTER FOR COMPUTATIONAL EARTH
AND ENVIRONMENTAL SCIENCES

- >< ’:"
vy
YIAN
NN

<A
K

%
<V
K

The Bottom Line

@ In 1 academic quarter, I teach beginning graduate students how to write a
@ Parallel
@ Functional
@ Object-Oriented
@ PDE solver using high-level mathematical abstractions,
@ Scaling beyond 16,000 cores with nearly 90% parallel efficiency,
@ Using either of 2 commercially released compilers or one pre-release open-source compiler,

@ With no reliance on libraries external to the language (e.g., no OpenMP or MPI in the source)

@ With zero chance of common beginner mistakes (e.g., no memory leaks or dangling pointers).

Fortrans Image

| A— i\

.

}i
http://www.computersciencelab.com/ http://www.computersciencelab.com/
ComputerHistory/HistoryPt4.htm ComputerHistory/HistoryPt4.htm

SCIENTIFIC
AMERICAN

e http://www.clemson.edu/caah/history/facultypages/
PamMack/leci22sts/computers.html

http:// longstreet.tyijepad.com/ thesciencebookstore/
computer_techhistory/

Fortrans Reality

Source: Bull, M., Guo, X., Ioannis Liabotis, I. (Feb. 2011) Applications and user
requirements for Tier-0 systems, PRACE Consortium.

Fortrans Future

8. Please indicate your requirements for comprehensive formal training in the following programming languages:

et important y Average

FORTRAN77 75.9% (60) 16.5% (13) 7.6% (6) 0.32
Fortran 95 31.8% (27) 41.2% (35) 27.1% (23) 0.85

e L —

C 37.5% (33) 35.2% (31) 27.3% (24) 0.90

Ces 38.9% (35) 33.3% (30) 27.8% (25) 0.89
Java 78.1% (57) 17.8% (13) 4.1% (3) 0.26

Scripting Languages (Python, PERL,

L 196 19.5% (1 ¥
Ruby etc.) 39.1% (34) 41.4% (36) 9.5% (17) 0.80

If you use another language, please indicate the relative importance of training in it:

Source: Stitt, T. and T. Robinson (2008) A Survey on Training and Education Needs for Petascale Computing, PRACE Consortium
Partners (http://www.tinyurl.com/PRACE-survey-2008).

Going parallel should not mean writing low-level parallel
code, just as going high-performance need not require
assembly language (as in the good old days) compilers
should help, even though, this is a difficult task.

A programming model that presents parallelism to the
programmer in a simple yet powerful way can achieve
surprisingly good results with the proper compiler
support. While at the same time comfortably outperform
what most novice programmers would produce with
great effort when forced to exercise direct control.

K /

Compiler Support

Compiler OOP+Functional | Parallel
Cray X X
Intel X X
GNU X 0
IBM X
Portland Group X
NAG X

@ “x" -> a released version supports all features employed in this talk.

@ "0" -> a pre-release version supports all features employed in this talk.

Parallel Functional OOP in Modern Fortran

OOP —> Functional — Parallel
Parallel programming (Fortran 2008)
Object-oriented programming (Fortran 2003)
Functional Programming (Fortran 95)

User-defined, purely functional operators

u t = -(.grad.p)/rho + nu*(.laplacian.u) -(u.dot. (.grad.u))

RO o

Distributed objects containing coarrays

“Do Concurrent”

main

‘ :: num_particles= ,num_dimensions=
:: stride
:: V(num_particles,num dimensions), response_time(num particles)

\"4
stride = input from file()
do concurrent (particle=1:num particles:stride)

V(particle,:) = &

V(particle,:) - dt*V(particle,:)/response time(particle)

! Can also call pure procedures here

end do

@ Supporting compiler technologies:

@ Gfortran: SIMD via front-end pragmas

@ Intel: Vectorization (AVX)

Case Study:
Morfeus

@ A coordinate-free PDE solver framework:
program main
use cartesian tensor class, only : cartesian tensor
use scalar field class, only : scalar field
implicit none
type(cartesian tensor) :: u
real :: t=0.,dt=0.1,t final=1.0,nu=0.01
type(scalar field) :: initial(3)
u=cartesian tensor(initial,rank=1,space dim=3,covariant=[.true.])
do while(t<t final)

@t =@ + At (vVEE — T - VA

= u + dt*(nu*(.laplacian.u) - (u.dot.(.grad.u)))
=t + dt
end do
end program

Asynchronous Expression

‘IEEE l .I. .
u(l)sxx() u(l)®yy() u(l)szz() ERNERE u(l)%x() RUEIR u(l)%y()

operator (+) operator (*)

operator(*)

execution

%
>
o
C
O
—_

e
O
c
>
7

<<

operator (+)

operator(-)

Synchronization

nu*(u(l)sxx() + u(l)syy() + u(l)szz())
- (u(l)*u(l)%sx() + u(2)*u(l)3y() + u(3)*u(l)sz())

1D Burgers Solver Load Balance

3480.714
3480.714

2610.536
-

1740.357

70.179

Results: 1D Burgers Equation Weak Scaling

o
o}
o

>

o

c
2
'S
E
w

o
>
o

¥ Weak Scaling

5000 10000
Number of Images

Fortran Philosophy

"Communicate properties, not optimizations.’

Conclusions

® Fortran is now a PGAS language with a platform-agnostic, scalable parallel
programming model.

® Modern Fortran supports multiple programming paradigms that fully
integrate with its PGAS features: array programming, functional
programming, object-oriented programming.

@ Very broad support for OOP/Functional programming features exists.
@ Parallel programming feature support is growing.

® Productivity for beginners is high.

References

@ Haveraaen, M., K. Morris, and D. W. I. Rouson (2013) "High-performance
design patterns for modern Fortran,” First International Workshop on
Software Engineering for High Performance Computing in Computational
Science and Engineering, Denver, Colorado, USA. November 22.

@ Radhakrishnan, H., D. W. 1. Rouson, K. Morris, S. Shende, and S. C. Kassinos
(2013) "Test-driven coarray parallelization of a legacy Fortran application,”
First International Workshop on Software Engineering High Performance
Computing in Computational Science and Engineering, Denver, Colorado, USA.
November 22.

Acknowledgements

@ Karla Morris, Sandia National Laboratories

® Hari Radhakrishnan and Stavros Kassinos, University of Cyprus
® Magne Haveraaen, University of Bergen

@ Jim Xia, IBM

@ Xiaofeng Xu, GM

® Sameer Shende, University of Oregon

