

Vivek Sarkar

E.D. Butcher Chair in Engineering
Professor of Computer Science

Rice University
vsarkar@rice.edu

What MPI and Hadoop can learn from each other!

2

Similarities between Hadoop MapReduce and MPI

§  Both provide a simplified programming system for
distributed-memory parallelism

§  Both support bulk-synchronous parallelism
§  A MapReduce execution consists of independent Map

tasks followed by collective Reduce tasks
§  An MPI program (typically) consists of independent

phases interleaved with collective calls

3

Hadoop MapReduce and MPI face complementary and
shared challenges
§  MapReduce

§  Large overheads for Iterative MapReduce
§  Use of I/O instead of high-performance communication

§  MPI
§  Programmability challenges e.g., MPI rank instead of

key-value pairs
§  Fault tolerance burdens on programmer

§  Both
§  Intra-node strong scaling

4

Parallel Mapper approach to addressing Strong Scaling
Challenge in MapReduce 25

Figure 3.1 : Parallel Mapper for multi-core systems

3.1.2 Programming Model

The programming model for using the Parallel Mapper is very straightforward as

well. We created a ParMapper class that can be extended by the user, just like a

regular Mapper class. The parallel mapper automatically handles decompositions

and parallelization of individual map tasks. The users simply need to extend the

ParMapper class instead of the Hadoop Mapper class to take advantage of the intra-

task parallelism.

The original programming model using default Mapper in Hadoop MapReduce

system.

public class MyMapper extends

“Optimized runtime systems for MapReduce applications in multi-core clusters”
MS Thesis, Yunming Zhang, Map 2014.

5

Results using Parallel Mapper and Compute Server
extensions 43

Figure 4.2 : Breaking the memory wall for KMeans

intermittently because the system is only processing the key/value pairs during the

peak. The map task is waiting on IO to read input key/value pairs during the periods

when the CPU utilization is close to 0 percent. As we can see, almost half of the

time of the hashjoin application is spent on waiting for IO operations. Thus, the CPU

over time data shows that hashjoin is an IO intensive operations and the performance

bottleneck is the IO of the multi-core systems.

Next, we look at the green line which uses two Hadoop map task slots, capable

of running two map tasks in parallel. The green line utilizes the IO more e↵ectively

by overlapping communication and computation. The overlap is shown as the gaps

between peaks in CPU utilization are much shortened. However, the peak CPU

utilization after the initial burst is still capped around 100 percent. The overall

running time also shortened to almost half of the red line (using a single map task).

“Optimized runtime systems for MapReduce applications in multi-core clusters”
MS Thesis, Yunming Zhang, Map 2014.

6

Replacing Shuffle by Collective Communications for
Iterative MapReduce

. . .

. . .

“Harp Collective Collection”, Bingjing Zhang, Judy Qiu, Geoffrey Fox.

7

K-Means Clustering Performance on 8-node Cluster

“Harp Collective Collection”, Bingjing Zhang, Judy Qiu, Geoffrey Fox.

8

Summary

§  Significant opportunity for HPC cluster software to
influence commercial cloud software and vice versa

§  HPC techniques can significantly improve
performance of Iterative MapReduce

§  MapReduce techniques can improve
programmability of HPC software
§  Iterative MapReduce is similar to patterns found in

scientific codes
§  Imagine MPI with key-value pairs instead of MPI ranks!

