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Similarities between Hadoop MapReduce and MPI

= Both provide a simplified programming system for
distributed-memory parallelism

= Both support bulk-synchronous parallelism

= A MapReduce execution consists of independent Map
tasks followed by collective Reduce tasks

= An MPI program (typically) consists of independent
phases interleaved with collective calls
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Hadoop MapReduce and MPI face complementary and
shared challenges

= MapReduce
= | arge overheads for lterative MapReduce
= Use of I/O instead of high-performance communication

= MP]

= Programmability challenges e.g., MPI rank instead of
key-value pairs

= Fault tolerance burdens on programmer

= Both
= |ntra-node strong scaling
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Parallel Mapper approach to addressing Strong Scaling
Challenge in MapReduce
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Results using Parallel Mapper and Compute Server
extensions

Breaking the Memory Wall for KMeans
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Replacing Shuffle by Collective Communications for
lterative MapReduce

MapReduce Model Map-Collective Model

CoIIectlve Communication

“Harp Collective Collection”, Bingjing Zhang, Judy Qiu, Geoffrey Fox.
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K-Means Clustering Performance on 8-node Cluster

K-Means Clustering Harp v.s. Hadoop on Madrid
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Summary

= Significant opportunity for HPC cluster software to
influence commercial cloud software and vice versa

= HPC techniques can significantly improve
performance of lterative MapReduce

= MapReduce techniques can improve
programmability of HPC software

= |terative MapReduce is similar to patterns found in
scientific codes

= |[magine MPI with key-value pairs instead of MPI ranks!
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