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Thirty years ago ...

u @ Crecit: Peter Lee, Microsoft Rasearch

Thirty years ago ...

Visualization was frustratingly slow




Today ...
Visualization spans all disciplines

Applications Drive Visualization
Power is Critical for Exascale
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Setting the Context - Scale
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Overarching Wind Energy
Science Challenges

Boundary layer meteorology (0 to 200 m above ground)
is not well understood nor is this layer well measured

The wind energy industry greatly under appreciates the
complexity of the airflow in this layer

The wind industry has historically assumed less
turbulence and more wind with height above the ground
e W

Low-Level Jets of High Wind (U.S. Midwest)

Lidar (laser radar)
measured wind
velocity

toward lidar

Comommny, Raban Bassn NOAL

Low-level jet streams can damage wind generators

SClence
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Mother Nature Is Not Always Kind
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Grid Cell Size [m] 10¢ ~ 10°
Domain Size [m] 107

Adopted from Mike Robinson (DOE/NREL)
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Weather & Solar Energy Related Industry Issues

Financing * Wind energy resource estimates at wind farm sites are
over-estimated on average
L\//
Ml * Wind turbines are failing faster than predicted (up to
Costs 40% earlier)
___‘--\_—_—‘-/,_4
* Wind & solar power variability complicate power
v"::::;’ . integration and load balancing across the grid - requires
reserves
- * Wind energy prediction has typical errors of 10-15%
""g"&:"m (flat terrain) to 15-25% (complex terrain)
\-\/
* Wind turbines are not designed to handle extreme
"‘“:n";.wﬂ':'“" weather conditions (shear, ice, snow, high wind, etc.).

— " More representative weather datasets are needed for
turbine design
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Weather & Solar Energy Related Industry Issues

Financing
Maintenance
Costs
~——— | SCIENCE
e
Variability is
CMU Charies C Mane | Tossday NMarch 29
Renewables Aren’t Enough. Clean Coal Is the Future
Coal supples over 40 percent of giobal electioty needs, and that
Prediction Errors percentage is going up. The only real QuesSon i how 1o minimize the
cmy damage. Dan Winters Procf that 9ood things don’t aiways come v
\/ nice packages can be found by taking the fast rain from Beding o
Extreme Weather
Impacts |
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CCMSC -8

CARBON CAPTURE
0 MULTIDISCIPLINARY
SIMULATION CENTER

Overarching Application

high efficiency advanced ultra-
supercritical (AUSC) oxy-coal
tangentaally-f' red power boiler
* extreme computing
+ predictive science w hybrid
validation/UQ

+ expensive function evaluation
¢ expensive dats

* rapid design and deployment w

; : _ A tom vavua

ALST@ M

* global reach:
present in 100
countries

* 2011/12 sales:
§26.5 billion

* 93,000 cmf.z.loycgs o




Why exascale?

dynamics

* pulverized-coal fuel

* mixing & reaction

+ deposition
multi-phase radiation

« participating media

* absorbing/emitting/scattering
resolved physics

* 1mm spatial resolution

« 30 seconds of real time

* 1microsecond temporal resclution
validation

* quantify degree of consistency w mmts.

+ reduce risk for rapid deployment

+ expensive function evaluation =

exascale

; i . ‘ ‘103 real time

O: Concentration
2cm/Tmillisec resolution
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* Data size: *HPSS storage facility at NERSC

—((3/4 PB) raw field data and 7TB of
particle data on Jaguar CrayXT5, 10 20
GB/s ADIOS

* Data complexity:

-~Data is multi-variate (~50 species)

—Turbulence chaotic phenomena:
~Wide range of scales
—~High intermittency, higher moments
matter!
~Tmme-varying
= Organized coherent motions
~Non-locality important for spatial and

temporal correlation of scalars and
vectors

TRANSPORTATION ENERGTY 1

Exascale Implies Big Data
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Dan Ancly
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Visual Methods
and Big Data in
Visualization

Perceptual Cues for Shading

Jim Blinn:

“Lighting models... there's something that always bothered me about lighting
models. Bui Tuong Phong is[was] a great guy and he did wonderful work ...
The thing is, this has no physical basis whatsoever ...

I'd like to see cosine power retired and better approximations being done.”

- SIGGRAPH 98 Keynote Speech
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Indirect Shading of Particles: Ray tracing
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Indirect Shading of Particles: Ray tracing
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Indirect Shading of Particles: Ray tracing
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Indirect Shading of Particles: Ray tracing
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Current Cluster Ray Tracing Visualization

Ray-tracing over-riding VTK renderer

Render Time Strong Scaing for rm_zcomed_in

PGPUNax Vi-Manta
Pv-Mesa VIGPU e
PV-Mesa-Max

1000 ¢ Pv-Manta
| PVManta-Max
PV-OPy

VI-Mesp s ¢




CurrentVisualization Software
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Michelangelo’s David

One billion polygons
& to billions of pixels 3

) Welcome to the first
¥ gigapixel, multi-view
rendering of
The Digital Michelangelo

Project's David
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Exascale Challenges:
Data Movement
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High Performance Data Movements for Real-
Time Monitoring of Large Scale Simulations

.Hopper (fat tree) Intrepid (torus)
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Scale simulation dumps to 130K cores with better performance than state of

the art libraries while enabling real-time, remote visualization
Simulotion VISUS IDX File Format End User

-
Real-time | '
|

Data Analysis T |
and Remote | = %’] L—
Visualization ! it e Modes.__:

Compute

Nodes

: IT User Feedback

[SC12a] Efficient Data Restructuring and Aggregation for |10 Acceleration in PIDX

Flexible DMAV Architecture that Allows
Exploiting the “Possible” Exascale Hardware Available

* Location of the compute resources

In Transit
- Same cores as the simulation
" W
— Dedicated cores *' Ll
- Dedicated nodes I Analyss Tasks R

Artaet Crmmawabon

» B Smulstion -
External resource SESE . E’; i = . SR
* Data access, placement, and persistence e | R e
noce
—-Shared data structures .
~Shared memory —
~Neon-volatile on node storage (NVRAM) Madey —  Staing sptien 1
CPL ) W ‘E,W ﬁu leg eption 2
—~Network transfer tr S i
© T e Shagieg aplion $
* Synchronization and scheduling el - edk )
—Execute synchronously with simulation ‘ :{}*3? =y
every n** simulation time step m—
—~Execute asynchrenously
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Exploring algorithm design and task allocation

in-situ+in-transit workflows enable matching algorithms with architectures

wS3D wmin-situ w data movement WM in-transit

in-situ PVR -
worarvn. |
o PVR = Parallel Volume Rendering
in-situ SSA bt SSA = Streaming Stalistical Analysis
RTC = Reduced Tepology Comgutation
hybrid SSA onhinn
simulation |
0 2 4 6 8 10 12 14 16
seconds

» 4896 cores total {4480 simulation/in situ; 256 in transit; 160 task scheduling/data movement)
* Simulation size: 1600x1372x430 ; All measurements are per simulation time step
[SC1Z2a] Combining In-Situ and In-Transit Processing to Enable Extreme-Scale Scientific Analysis

Exascale Challenges:
Data Movement

In Situ or In Transit
For Either:

Visualization is really just interpolation
and sampling (think higher order)

Why not use the data structures/
algorithms applications use?
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Exascale Challenges:
Analysis
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[ XaXs)

Soeprem Tincang

Topological Analysis of Massive Combustion Simulations

Fis  Vew

* Non-premixed DNS
combustion (J. Chen, SNL):
Analysis of the time evolution
of extinction and reignition
regions for the design
of better fuels

Univarsity of Utah

* Analysis algorithms vs simulation:

- different communication/instruction
profile/memory access patterns

- different communication patterns
* Develop power models with machine
independent characteristics (Byfl and MPI)

* Validate power model using empirical
studies with instrumented platforms

* Extrapolate to Titan
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We Evaluate the Feasibility of Exascale In-Situ Feature
Extraction and Tracking and its Impact on Power Consumption
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[SC130] Exploring Power Behaviors and Trade-offs of In-situ Data Analytics




Exascale Challenges:
Multifield / Multivariate
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Visualization of 10D Combustion Simulation of

5CH 3y Jet CO/H2-Air Flames
Local Extinction \
V"
’ "
> ~ Pure Oxidizer ———-"’/'7

, Pure Fuel e

10 dimensional data set describing the heat
release wrt. to various chemical species in a
combustion simulation

— Analysis of Combustion Simulations

/ N

Combustion Simulation
of Jet CO/H2-Air Flames

Input: Composition of 10 chemical species

Output: Temperature




Exascale Challenges:
Uncertainty
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Visualizing Uncertainty




QuizlLens: A Multi-lens approach for
uncertainty exploration

e Global
information
important for
qualitative
evaluation &
context

® Local information
necessary for
quantitative
understanding

® Interchangeable
lenses to explore
various data
characteristics

* Multi-run/model simulations
* Distribution of data at every

point Lo S
-—
* Mean/std dev may not be
appropriate WP
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Visualization 2020

Scalable methods

Data analytics
Multivariate techniques
Minimize data movement
Power aware algorithms

Uncertainty visualization
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Visualization 2020
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Visualization 2020
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Exciting Times - Lots of Research
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