BLUE WATERS SUSTAINED PETASCALE COMPUTING

Power Monitoring At NCSA ISL and Blue Waters

Salishan 2013 Conference

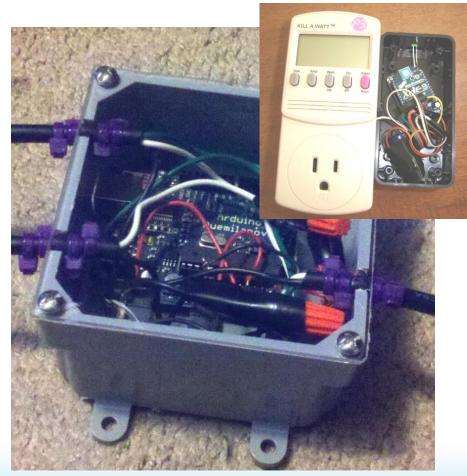
Craig P Steffen Blue Waters Science and Engineering Applications Support Group csteffen@ncsa.illinois.edu

NCSA: Measuring Power Use and Power Effectiveness of User Applications using Sustained System Performance Metrics

- Use a **real** user application
 - It is important to use a real user application that makes realistic demands on the system
- Measure power of whole machine
 - As close as possible to data-center/machine boundary (where the facility charges the owner)
 - Buy (create) and install power monitoring
 - Make the data *available* in a useful form to anyone who can use it
- Measure whole application (wall clock) run time
 - Scheduler deals with wall clock time (that's the time other applications can't be running)
 - User allocations charged wall clock time

- 32 node Innovative Systems Lab "Accelerator Cluster" system
 - Power monitoring on single node
- 128 node ISL/ECE "EcoG" system
 - Power monitoring on 8 nodes block
- 25,712 compute-node Cray XE/XK "Blue Waters" system
 - Whole-system power monitoring per building transformer *and* per computational cabinet

- 32 nodes
- HP xw9400 workstation
 - 2216 AMD Opteron 2.4 GHz dual socket dual-core
 - Infiniband QDR
- Each node: Tesla S1070
 1U GPU Computing
 Server
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM

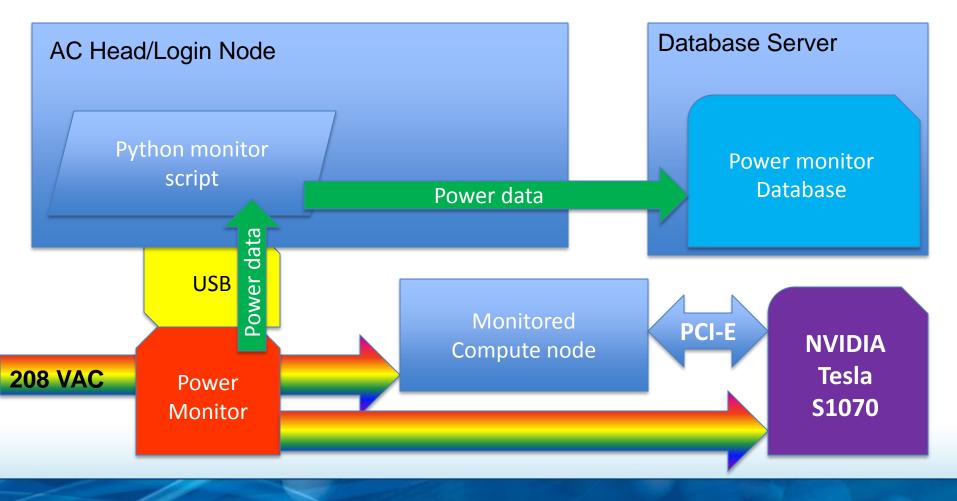

Commercial Power Meters (~2010)

	price	readout	monitors
Kill-a-watt	\$50	LCD display	120 VAC
PowerSight PS3000	\$2450	asynch	100-250 VAC
ElitePro™ Recording Poly-Phase Power Meter	\$965	asynch	120 VAC
Watts Up Smart Circuit 20	\$194.95	Web-only	120 VAC

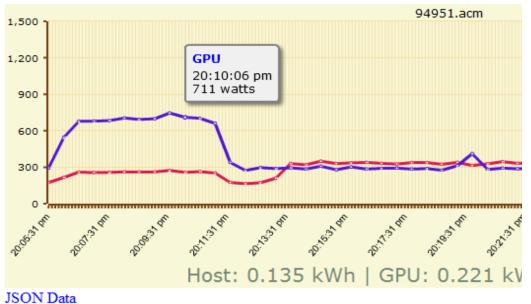
- V1: Kill-a-watt based Xbee "Tweet a watt"
 - Wireless transmitter
 - Voltage and current
- V2 and V3: Arduino based power monitors
 - 1 Arduino Duemilanove per chassis
 - 1 Manutech MN-220 20A AC power sensing transformer per measured channel
 - Arduino forms RMS value of AC voltage → current (5 times per second)

BLUE WATERS SUSTAINED PETASCALE COMPUTING

NESA



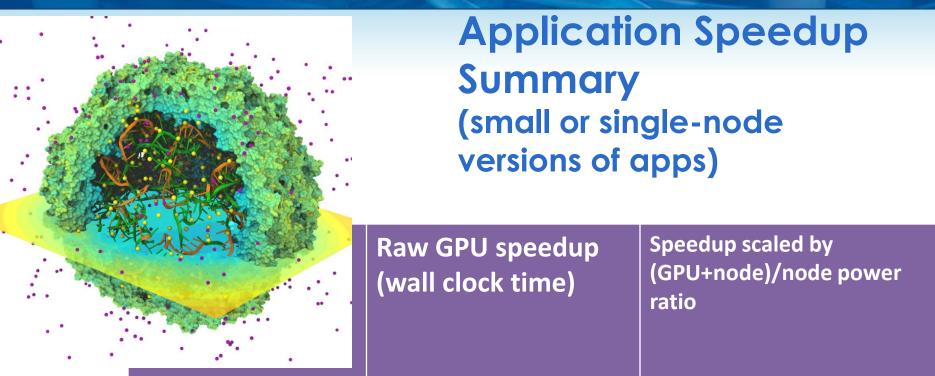
	price	readout	monitors
Kill-a-watt	\$50	LCD display	120 VAC
PowerSight PS3000	\$2450	asynch	100-250 VAC
ElitePro™ Recording Poly- Phase Power Meter	\$965	asynch	120 VAC
Watts Up Smart Circuit 20	\$194.95	Web-only	120 VAC
Our Arduino-based monitor	~\$100 (2 channels)	USB text (python)	base config: 120/208/250 VAC


Power Data Harvesting During Job

AC Power Monitor Software: Tied Into Job Software, Exports Data Automatically

AC Power Utilization

- Blue = GPU power
- Red = CPU node power


- Use qsub to request "powermon" feature
- Prolog script creates link to power graph (left) and raw power data file
- Power graph available during the run; graph and link to data works afterward

(GPU has separate power supply)

NAMD	6	2.8
VMD	26	10.5
QMCPack	62	23
MILC	20	8

Stage 2: EcoG Student-built GPU Cluster (2010-2012)

- ECE Independent study course in "cluster building" to create high performance GPU-based architecture
- Maps to GPU math capabilities
- Frequent but not constant nodeto-node updates
- Likely target apps:
 - Molecular dynamics
 - Fluid dynamics
 - HPL for testing

- 128 nodes
- Tesla 2050 GPUs primary
 computing element; single modest
 CPU per node
- Single-socket motherboard
- Each node:
 - Intel® Core i3 2.93 GHz CPU
 - 4 GB RAM main memory (smal to lower power footprint)
 - 1 two-port QDR infiniband
- High-performance GPUs, lower power CPUs
- NFS root file system (stateless nodes)

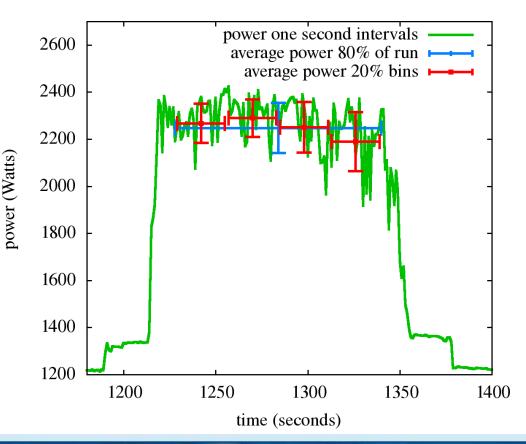
EcoG Power Monitoring: modified rack PDU

Re-used rack-mounted PDU

- 2 voltage probes for 208V power legs
- 2 clamp-on current probes for current measurement
- Probes secured INSIDE enclosure
- Asynchronous readout via text file

Power Sight

PS 250



Green 500 Run Rules and EcoG Submission (HPL known quantity for entire system)

Green 500 run rules as of fall 2011:

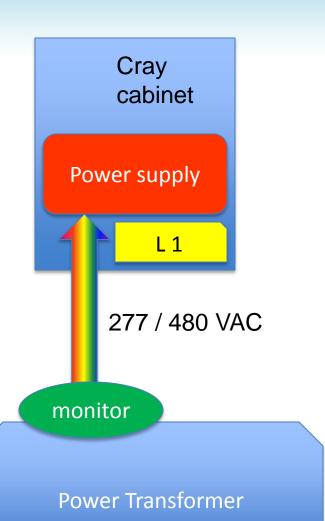
- Fraction: ANY sub-fraction can be measured and scaled up
- Measurement position: anywhere
- Time: at least 20% of run in the middle 80%
- Subsystems: Compute nodes (only) required
- NCSA's EcoG (3 page) Submission
 + technical report
 - 8 of 128 compute nodes
 - Power measured upstream of node (entire chassis)
 - We decided to average power from
 whole 80% of run

HPL is not an application but it is a valid system stress test

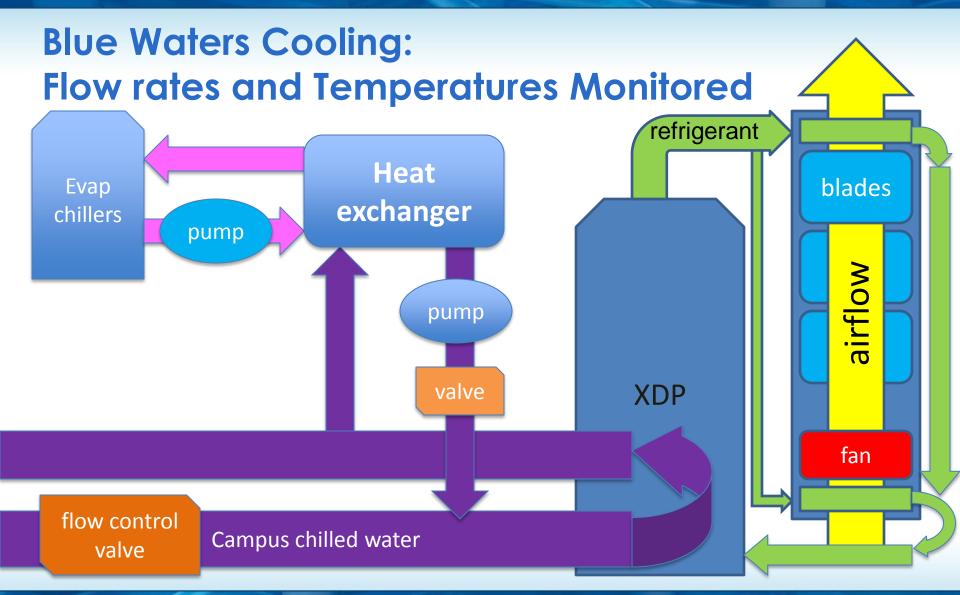
- Subsampling allows small numbers of elements to skew the average (up or down)
- Measuring power inside the system leaves out efficiency of AC/DC or DC/DC conversion efficiency (10 or 20%)
- Not requiring whole run allows lower power section of run to be used (~3% effect)
- Leaving out subsystems (network, head nodes, storage, cooling etc.) artificially lowers power cost of system

NCSA has been working with EEHPCWG to create a new power monitoring and reporting specification

- Energy Efficient HPC Working group: <u>http://eehpcwg.lbl.gov</u>
- Creating a specification for wholesystem power measurement for application efficiency characterization
- Hope to convince Top-500, Green-500, and Green Grid to adopt this standard for "power" part of submissions
- Also to drive specifications for machines and comparisons
- Compare power measurement and performance measurement (general measurement of value)


- Three quality levels
- Level 1 ≈ current Green-500
- Level 3 = current best possible
 - Requires 100% of system
 - Power measured upstream of AC/DC conversion OR loss is accounted for
 - 100% of parallel run used in average power calculation
 - ALL participating subsystems required to be MEASURED
 - Metering devices must be integrating total energy meters

- 3D Torus Gemini network topology 24x23x24
- Mix of XE and XK Cray nodes (XK in contiguous block)
 - 22640 XE compute nodes
 - Each node 2-die Interlagos processor 16 Bulldozer cores
 - 64 GB of RAM
 - 3072 XK compute nodes
 - Each node 1-die Interlagos processor 8 Bulldozer cores
 - 1 Kepler K20X GPU
 - 32 GB of RAM
- 3 large Sonexion Lustre file systems (usable capacities):
 - /home (2.2 PB)
 - /project (2.2 PB)
 - /scratch (21.6 PB)



Blue Waters Power Delivery

- L1 controller monitors and reports power from within (each) cabinet
- Each transformer output monitored and logged

Integrated Systems Console

- Tool being developed as system visualization/monitoring/analysis tool for Blue Waters admins
- Selected features are also available on the Blue Waters Portal for users
- All this information in one place allows triage of cooling problems
- All data together

● ● ● √ Integrated System Console ×							
	ocalhost	(C					
BLUE WATERS							
SUSTAINED PETASCALE COMPUTING							
Home							
Power	15	15	15	15	15	15	
Storage	15	15	15	16	16	15	
Jobs	34	30	35	20	35	33	
Cabinets/Nodes	15	16	16	15	15	15	
Nodes Down	34	33	36	22	34	32	
Cabinet Status	15	15	16	16	15	15	
Service Nodes	35	30	35	22	36	33	1
Machine Logs	16	22	20	35	16	35	
Reports	34	32	35	22	34	37	
HELO	16	22	20	36	16	34	
Admin	34	35	29	36	35	28	
	16	24	19	35	15	37	
	34	35	31	35	34	29	
	15	24	19	36	15	35	
	36	34	29	35	35	28	
	20	22	22	22	15	35	
	18	13	17	13	34	28	
	22	13	18	13	24	24	
	19	13	15	13	35	29	
	22	13	18	13	24	24	
	19	13	15	13	23	25	13

Selected Applications on Blue Waters

During Acceptance four large-scale science applications: VPIC, PPM, QMCPACK and SPECFEM3DGLOBE sustained performance >1PF on Blue Waters

- Weather Research & Forecasting (WRF) run on Blue Waters is the largest WRF simulation ever documented
 - Simulating hurricane Sandy
 - Submitted as paper to SC 2013

These applications are part of the NCSA Blue Waters Sustained Petascale Performance (SPP) suite and represent valid scientific workloads.

BLUE WATERS

(sizes are in MPI					SPP
ranks)		NSF non-	SPP full system		Kepler
turbulence	NSF petascale 360,000	petascale	(>1.0 PF/s)	SPP Interlagos	K20X
nwchem	500,000			80000 , 8000	
specfem3d			693,600	173400 , 21600	
vpic			180,224	131072, 73728, 8192	
ppm			85,668	33024, 32250, 2112	
milc	316,416				
milc		2048			
milc				65856, 8232	
wrf		512			
wrf				72960, 4920	
qmcpack			90,000	153600, 76800, 38400	700
namd (100M)	25,650				
namd				20000 , 768	768
chroma					768
gamess					1536
paratec		512			
Full system:	XE: 724,480	XK: 49,152		Composite SPP 1.3 PF/s	

Friendly User Period Power Usage

- Friendly user Period: users running real production workload
- Average Power February: **9.46 MW**
- Average Power March: 9.71 MW

Good measurements + effective delivery = ability to understand system behavior

- Real effectiveness is in terms of performance per watt
 - Real performance in terms of wall clock time
 - Real power in terms of full system power
- Get the data to those who can use it

Thanks and References

Thanks to:

- National Science Foundation
- State of Illinois
- Microsoft
- IBM Linux Technology Center

References

Enos, J.; Steffen, C.; Fullop, J.; Showerman, M.; Guochun Shi; Esler, K.; Kindratenko, V.; Stone, J.E.; Phillips, J.C., "Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters," Green Computing Conference, 2010 International, vol., no., pp.317,324, 15-18 Aug. 2010 doi: 10.1109/GREENCOMP.2010.5598297

http://www.ncsa.illinois.edu/News/Stories/PFapps/

http://www.nersc.gov/research-and-development/performance-and-monitoringtools/sustained-system-performance-ssp-benchmark/