
Salishan 2013

�
MapReduce:

Before moving beyond it, let’s make sure we’ve drained it dry
�

Francis Sullivan

IDA/Center for Computing Sciences

What is MapReduce?

I MapReduce idea, most elementary version:

Map Farm out sub-problems that are (somewhat) independent.
. Solve the sub-problems.

Reduce Collect the results.
. Use these results to solve some overall problem.

I Allow the “overall problem” to be a sub-problem of some
larger problem.

Some general principles for attacking big problems

1 Thin the data, but retain the structure.

I Use the structure to accelerate the processing.
I Structure

. Graphs

. Directed graphs

. Simplicial complexes

2 Use the MapReduce idea to parallelize

3 Reduce the dimension

. Approximations

. Projections onto lower dimensions

Two examples

1. Avoiding backtrack: a simple (but NP-complete) game.

2. Classical statistical physics problem.

Both examples make use of underlying graph theory.

I. Simple game - Solving Sudoku without using backtrack

Uses both non-obvious graph structure and a primitive version of
MapReduce

. . . | . . . | . 3 9

. . . | . . 1 | . . 5

. . 3 | . 5 . | 8 . .

. . 8 | . 9 . | . . 6

. 7 . | . . 2 | . . .
1 . . | 4 . . | . . .

. . 9| . 8 . | . 5 .
. 2 . | . . . | 6 . .
4 . . | 7 . . | . . .

I Each entry in the puzzle is constrained in three ways: every
row, column and block must be a permutation of the integers
1 . . . 9

I For each entry and each type of constraint create a 1 ×9 row
of zeros and ones. Nine entries in any row, column, block
generate a 9× 9 matrix

I Get 27 0-1 matrices of size 9× 9, one for each row, one for
each column, one for each block

The puzzle row:

. . . | . . . | . 3 9

Gives the 9 × 9 matrix:

1 1 0 | 1 1 1 | 1 1 0
1 1 0 | 1 1 1 | 1 1 0
1 1 0 | 1 1 1 | 1 1 0

1 1 0 | 1 1 1 | 1 1 0
1 1 0 | 1 1 1 | 1 1 0
1 1 0 | 1 1 1 | 1 1 0

1 1 0 | 1 1 1 | 1 1 0
0 0 1 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 1

After permutation this is the same as

1 1 1 | 1 1 1 | 1 0 0
1 1 1 | 1 1 1 | 1 0 0
1 1 1 | 1 1 1 | 1 0 0

1 1 1 | 1 1 1 | 1 0 0
1 1 1 | 1 1 1 | 1 0 0
1 1 1 | 1 1 1 | 1 0 0

1 1 1 | 1 1 1 | 1 0 0
0 0 0 | 0 0 0 | 0 1 0
0 0 0 | 0 0 0 | 0 0 1

There seem to be 7! possibilities...

Not really...

Look again and consider the column constraints

. . . | . . . | . 3 9

. . . | . . 1 | . . 5

. . 3 | . 5 . | 8 . .

. . 8 | . 9 . | . . 6

. 7 . | . . 2 | . . .
1 . . | 4 . . | . . .

. . 9| . 8 . | . 5 .
. 2 . | . . . | 6 . .
4 . . | 7 . . | . . .

Entry (1,3) cannot be 3 or 9 or 8, entry (1,2) cannot be 3, 9 or
7,2, etc.

Need to enforce consistency among constraints

Map Send out 27 subproblems

Reduce Collect results and refine the question

Constraint consistency zeros out some entries of the 27 matrices

Some entries now “un-supported” so zero out more.

What does “un-supported” mean?

1 1 1
0 1 1
0 0 1

Three supported entries, one permutation (123).

�

1 1 1
0 1 1
1 0 1

Seven supported entries, three permutations (123), (231), (321)

Support of a 0-1 matrix

. Must be at least one perfect matching (or the problem has no
solution)

. A supported edge is part of at least one perfect matching

. Use the existing perfect matching to define a directed graph.

. Edges in bi-connected components are supported

. Finding support can be done with dmperm

. Determining support speeds up Sinkhorn balancing.

Perfect matching and bi-connected components

Maximum matchings in bipartite graphs

. Matching problems - often concerned with bipartite graphs.

. Finding a maximum matching in a bipartite graph
G = (V = (X ,Y),E) is the simplest problem.

. Augmenting path algorithm finds one by finding an
augmenting path from each x ∈ X to some y ∈ Y and adding
it to the matching (if an augmenting path exists).

. Each path can be found in O(E) time, the running time is
O(VE).

Equivalent to:

. Add a super source s with edges to all vertices in X

. Add a super sink t with edges from all vertices in Y

. Find a maximal flow s ⇒ t.

Features

. Finite calculation - iterate until nothing changes.

. No backtrack for this algorithm.

. No floating point for this algorithm.

Other features

. Often solves the problem.

. Phase transition?

. Always reduces the size of the search tree.

II. A more serious example: the Ising model

. The Hamiltonian

H(σ) = −
∑

<i j> Jijσiσj −
∑

j hjσj

. Probabilities for configurations. (Here β = 1/kT).

Pβ(σ) = e−βH(σ)

Zβ
,

. The partition function - tells everything about the model

Zβ =
∑

σ e
−βH(σ)

. Define various means of quantities over configurations.

〈f 〉β =
∑

σ f (σ)Pβ(σ)

Some features of the Ising model

* Evidence that atoms are “real” and not just a theory.

* Can’t actually solve, even for an n × n 2d grid.

* Have 2n
2

possible configurations.

* Need to look at n = 1000. Big, big data

* Even if h = 0 the problem is NP-hard.

* Non-SIMD parallel version ...?

The primordial algorithm

The Metropolis-Hastings method

1. Pick a spin site using selection probability and calculate the
contribution to the energy involving this spin.

2. Flip the value of the spin and calculate the new contribution.

3. If the new energy is less, keep the flipped value.

4. If the new energy is more, only keep with probability

e−β(Hν−Hµ)

5. Repeat.

A famous puzzle

. If h = 0 the 2d case with periodic boundary conditions has a
phase transition where sinh(2β) = 1 i.e. tanh(β) =

√
2− 1.

. Many heavily-used variants of the basic Metropolis-Hastings
method - random cluster, Swendson-Wang, BKL, . . .

. One worrying issue - none of these variants gets to the limit
distribution in polynomial time, all have trouble near
sinh(2β) = 1. So-called critical slowing down.

. The Jerrum-Sinclair formulation does get there in polynomial
time, but the polynomial is very high-order.

Spins and subgraphs

Getting to a MapReduce approach

Spins world vs subgraphs world.

. Instead of sampling spin configurations, sample subgraphs.

. A new variable is defined.

λ = tanh(β)

. Define coefficients for subgraphs having 2k odd vertices, for
each k.
Solve in parallel and collect into one partition function (i.e.
MapReduce!).

. Note that the question is really about subgraphs and does not
depend on β, i.e. independent of the temperature!

Some details

I

Z (µ) =
∑

Ckµ
2k

Here µ comes from the applied magnetic field and the ck are
given by

Ck =
∑

X :|odd(X)|=2k

∏
(i ,j)∈X

λij

I Simplest case, k = 0. Subgraphs having no odd vertices.

c0,j ≡ number .subgraphs(X : |edges(X)| = j)λj

C0 =
∑

j c0,j

I Looking for sub-graphs having zero odd vertices.

Living in subgraphs world

. How to sample subgraphs having no odd degree vertices?

. Two ideas - one from graph theory and one from Knuth and
Pang Chen.

Graphs and vector spaces

. Graphs and vector spaces are different instances of the same,
more general, mathematical object.

. In fact, a graph can be thought of as a vector space, but not
over the real numbers.

. The algorithm we give for k = 0 works for any value of k.

. But note that there are 22n
2

subgraphs.

A graph is a vector space

. G a simple undirected graph with edge set E.

. The power set of E is a vector space over Z mod 2.

I Symmetric difference as addition, identity function as negation,
and empty set as zero.

I The one-element sets form a basis, so dimension is equal to
the number of edges of G.

I The cycle space - the subspace generated by (the edge sets of)
all the simple cycles of the graph.

I The addition of cycles is sometimes an edge-disjoint union of
two simple cycles, and sometimes one larger cycle.
always a degree-zero subgraph.

Getting a basis for the cycle sub-space

. A spanning tree is a selection of edges of G that form a tree
spanning every vertex.

. Adding just one edge to a spanning tree will create a cycle;
such a cycle is called a fundamental cycle.

. For a connected graph with V vertices, any spanning tree will
have V-1 edges

. A graph of E edges will have E-V+1 fundamental cycles

. There are many other bases for cycle space.

Estimating the c0,k

. Two ideas - estimating the size of a tree (Knuth) and
estimating the size of a tree better (Chen).

1. Knuth algorithm: Walk down one path of a tree and notice
how much branching.

2. Chen algorithm: Use Knuth but also note the structure of the
tree. Group together similar items and keep only one.

. Stratification: process of dividing members of the population
into homogeneous subgroups before sampling.

. The strata mutually exclusive.

. Every element in the population assigned to only one stratum.

The basic Knuth counting algorithm.

. Simple estimate of sum of n samples taken from space size N.
Choose uniformly:

Ên[xi ; 1/N] = 1
n

∑n
i=1

xi
1/N

. Importance sample.
Choose with probability P

En[xi ;P] = 1
n

∑n
i=1

xi
p(i)

begin

Q ← (root, 1)

while (Q not empty do

output an element (s,w) of Q with maximal h(s)
for each child t of s do

α← h(t)
if Q contains an element (sα,wα) in stratum α then do
wα ← wα + w
with probability w/wα do
sα ← t
else
insert a new element (t,w) into Q

end

Cycle basis

How the tree works

Features

I Temperature does not enter the sampling algorithm.

I Plugging in β gives an excellent approximation to Zβ.

I Harder to code than Metropolis-Hastings.

Take-aways

A The basic MapReduce idea is useful in many contexts.

B Graph theory has some very surprising applications.

Acknowledgements

I The idea of approaching Sudoku in this way was inspired by
Todd Moon, Jacob Gunther, and JJ Kupin, who do something
similar but use a floating point method instead of finding
support.

I Thinking of the approach as iterated projections was a result
of conversations with Veit Elser.

I A good reference on support is: Tamir Tassa, Finding all
maximally-matchable edges in a bipartite graph

I The idea of thinking about the Ising model as a question
about subgraphs having various numbers of odd vertices is
due to Jerrum and Sinclair. Part of the idea goes back to the
notion of high temperature expansions.

I The approach described here is part of a joint work with
Isabel Beichl, Noah Streib, and Amanda Streib.

Thank you!

