
A Fast Dynamic Language for Technical Computing

Stefan Karpinski, Jeff Bezanson, Viral B. Shah & Alan Edelman

u alj i

Two Language Problem

People love dynamic environments

‣ for data analysis and exploration

‣ but dynamism and performance are at odds

A standard compromise:

‣ high-level logic in convenient, dynamic language (Matlab, Python, R)

‣ performance-critical code in static, low-level language (C, C++, Fortran)

Creates a huge barrier to development

‣ continually breaking the abstraction barrier indicates a poor abstraction

Core Design

‣ dynamically typed
but with highly descriptive type system

‣ generic functions
multiple dispatch is the central paradigm

‣ aggressively specialized on run-time types
(technically an implementation detail, but an important one)

“Everything is a template”

Some Features

‣ Lisp-style macros

‣ cooperative threading (coroutines)

‣ async I/O + distributed parallel computing primitives

‣ easy C/Fortran calling
no wrapper code, no compilation

callbacks from C to Julia code

‣ great LAPACK and FFTW interfaces
it's not just LU any more

‣ native layout structs and struct arrays

‣ portable – runs on 64/32 OS X, Linux & Windows

Matlab-like

function randmatstat(t,n)
 v = zeros(t)
 w = zeros(t)
 for i = 1:t
 a = randn(n,n)
 b = randn(n,n)
 c = randn(n,n)
 d = randn(n,n)
 P = [a b c d]
 Q = [a b; c d]
 v[i] = trace((P'*P)^4)
 w[i] = trace((Q'*Q)^4)
 end
 std(v)/mean(v), std(w)/mean(w)
end

Low-Level

function qsort!(a,lo,hi)
 i, j = lo, hi
 while i < hi
 pivot = a[(lo+hi)>>>1]
 while i <= j
 while a[i] < pivot; i = i+1; end
 while a[j] > pivot; j = j-1; end
 if i <= j
 a[i], a[j] = a[j], a[i]
 i, j = i+1, j-1
 end
 end
 if lo < j; qsort!(a,lo,j); end
 lo, j = i, hi
 end
 return a
end

High-Level

function copy_to(dst::DArray, src::DArray)
 @sync begin
 for p in dst.pmap
 @spawnat p copy_to(localize(dst),
 localize(src,dst))
 end
 end
 return dst
end

Modular Integers

immutable ModInt{n} <: Integer
 k::Int
 ModInt(k) = new(mod(k,n))
end

-{n}(a::ModInt{n}) = ModInt{n}(-a.k)
+{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k+b.k)
-{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k-b.k)
*{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k*b.k)

convert{n}(::Type{ModInt{n}}, i::Int) = ModInt{n}(i)
promote_rule{n}(::Type{ModInt{n}}, ::Type{Int}) = ModInt{n}

show{n}(io::IO, k::ModInt{n}) = print(io, "$(k.k) mod $n")
showcompact(io::IO, k::ModInt) = print(io, k.k)

Obligatory Performance Slide

1

10

100

1000

10000

Fortran Julia Python Matlab Octave R JavaScript

execution time relative to C++ (lower is better)

Reports from the Real World

“[R]eports ... indicate that Julia gives rather significant boosts over
Matlab/R, sometimes by even more than the benchmarks might

suggest. That was surprising to me, since I expected the gap to be
largest for benchmarks.

⋯

[O]ne common factor was fairly sizable (but not ridiculous) memory
requirements; perhaps Julia's ability to manage memory in a more

fine-grained fashion pays major dividends for such problems.”

– Tim Holy, WUSTL
http://goo.gl/r6qwz

http://goo.gl/r6qwz%5D
http://goo.gl/r6qwz%5D

Simplex Benchmarks

https://github.com/mlubin/SimplexBenchmarks

Benchmark of some important operations:

Julia C++ C++bnd Matlab PyPy Python
Sp. mat-sp. vec 1.29 0.90 1.00 5.79 19.20 417.16
Sp. vector scan 1.59 0.96 1.00 13.98 13.81 48.39

Sp. axpy 1.85 0.70 1.00 19.12 9.21 78.65

C++bnd = C++ with bounds checking

Execution times relative to C++bnd

7 / 8

source: Miles Lubin & Iain Dunning

Finite Element Programming

Comparison by Amuthan Ramabathiran [http://goo.gl/SRciE]:

‣ FEniCS: “collection of software for high level finite element code
development written in Python and C++”

‣ FreeFem++: “partial differential equations solver written in C++ with its own
DSL (Domain Specific Language) with a C++ like syntax.”

‣ a simple Julia FEM solver: “Thanks to Julia’s elegant syntax the code is
largely self-explanatory.”

http://goo.gl/SRciE%5D
http://goo.gl/SRciE%5D

Finite Element Programming

Finite Element Programming

“[W]hat is really interesting about Julia is the relative ease with
which various strategies can be implemented and tested without

leading to code swell, while at the same time resulting in high
performance code.

⋯

Julia appears to be a very good choice for developing research
oriented finite element software that is both fast and easy to

develop.”

– Amuthan Ramabathiran
http://goo.gl/SRciE

http://goo.gl/SRciE%5D
http://goo.gl/SRciE%5D

Memory Control

Three key features:

‣ C-like, C-compatible “struct” types (and immutable versions too)

‣ efficiently laid out typed Arrays

‣ in-place APIs for operating on data
sort! filter! lufact! cholfact!

Community

130+ contributors to base Julia

1000+ mailing list subscribers

140+ packages, including:

BloomFilters Cairo Calculus Calendar Catalan Clp Clustering CoinMP ContinuedFractions
Cubature DICOM DataFrames DataStructures DecisionTree Devectorize DimensionalityReduction
Distance Distributions DualNumbers Elliptic FITSIO FastaRead GLFW GLM GLPK GLUT GSL
GeometricMCMC GoogleCharts Graphs Grid Gtk Gurobi HDF5 HDFS HTTP Hadamard
HypothesisTests ICU Images ImmutableArrays Ito JSON JudyDicts Jyacas KLDivergence LIBSVM
Languages LazySequences LinProgGLPK Loss MAT MATLAB MCMC MDCT MLBase MNIST
MarketTechnicals MathProg MathProgBase Meshes MixedModels Mongo Mongrel2 NHST NLopt
ODBC ODE OpenGL OpenSSL Optim PLX Polynomial Profile PyCall Quandl RDatasets RNGTest
RandomMatrices Resampling Rif Rmath Roots SDE SDL SVM SemidefiniteProgramming SimJulia
Sims Stats Sundials SymbolicLP TOML TextAnalysis TextWrap TimeModels TimeSeries Tk
TopicModels TradingInstrument Trie UTF16 Units WAV ZMQ kNN

