¥All your cores are
belong to us

Achieving Manycore Scale

Alexander Gounares
Concurix Corporation
April 23rd, 2013

_l
>
®
3
)
=)
<
o)
o
)
®
)
=
)
o
>
@
)
@

CATS : ALL YOUR BASE ARE BELONG
TO US.

“Zero Wing”, 1991

The manycore era is here.

Connection Machine CM-2

Big Data: Facelbook stats (August 2012)

2.5 Billion content items shared per day
2.7 Billion “Likes” per day

300 Million photos per day

500+ Terabytes new data ingested per day

105 Terabytes data processed every 30
minutes

‘2Jay Sl BJS 8100AUuBW 8y |

100+ Petabytes in no-sgl Hadoop storage

‘2Jay Sl BJS 8100AUuBW 8y |

Modem Cloud Service Model

*8J9y Sl BJS 8100AuBW 8y |

In-memo
Incoming Data "y Huge noSQL

i Storage and
Streams Real Time Data :
processing Analytics

The Manycore era is here now

1997: THE FIRST INTEL® TERAFLOP COMPUTER
consisted of: and occupied:

9,298 processors | /2 caamers

amdpocﬂlﬁ;w: ~ $4 . 2 K

SLOT Xeon'Phi

InEE

WAy
wuubbbhbbbl

k

|
(LA

SOy

¥
A
i

nmanu ﬂ g | B8, ‘v" 3 THE INTEL® XEON® PHI™ COPROCESSOR

will provide:

TERAFLOP OF
PERFORMANCE

‘2Jay Sl BJS 8100AUuBW 8y |

AMD Opteron family 15h

64 cores: 16 per chip x 4 sockets
Streaming SIMD extensions (SSE4)
128 GB RAM—512GB max

8 NUMA Domains with Hypertransport

~$4.7K

The manycore era is here.

The manycore era is here.

300000 — — T
250000 p-
200000

150000

‘2Jay Sl BJS 8100AUuBW 8y |

100000

Throughput (requests / sec / core)

50000 —

| | | |
1 4 8 12 16 20 24 28 32 36 40 44 48
Cores

0 | I | | | I |

Figure 5: memcached throughput.

Locks in traditional O-O
languages limit scalability per
Amdahl’s Law

[raditional software does not scale on manycore

http://pdos.csail.mit.edu/papers/
linux:osdi10.pdf

Amdahl’s Law
20.00

—1

L~

18.00 v

/ parallel Portion
16.00 50%

—75%
14.00 —90%

——95%
12.00 A

10.00 /

Speedup

1
8.00 /

4.00 7

/
2.00-%{i,r
0.004—1

< [+0] [~}

[
o] (=]

Number of Processors

m

[A
ERLANG

nede

Frlang and NodedS to the rescuel

The manycore era is here.

249y Sl eJo alodAuew ay |

Erlang
Single assignment
No shared state
Lightweight processes
Message passing
Recursion and pattern matching
Concurrency built in

Supervisor based reliability model

Node.JS

Server side Javascript with Google V8
engine

Single threaded asynchronous callback
model

Multi-core via OS processes (1 or more
per core)

Existing libraries wrapped in closures—

functional programming for the
uninitiated

Message passing via [domain] sockets

-module(tutls).
-export([start/0, ping/2, pong/@]).

ping(@, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished~n", [1);

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1)

‘2Jay Sl BJS 8100AUuBW 8y |

end,
ping(N - 1, Pong_PID).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping_PID} ->
io:format("Pong received ping~n", [1),
Ping_PID ! pong,
pong()
end.

start() ->
Pong_PID = spawn(tutlS5, pong, [1),
spawn(tutlS5, ping, [3, Pong_PID]).

NodedS example

var http require('http'),

8000;

port

‘2Jay Sl BJS 8100AUuBW 8y |

var server = http.createServer(function (request, response) {
response.writeHead(208, {"Content-Type": "text/plain"});
response.end("Hello World\n");

s

server.listen(port);

console.log("Listening on <insert your favorite ip>:" + port);

‘2Jay Sl BJS 8100AUuBW 8y |

Now something more complex....

Ruby Ralls Erlang Style!

WIKI QUICK START DOWNLOAD V084 &, ABOUT

‘2Jay Sl BJS 8100AUuBW 8y |

Build your next website with Erlang —
the world’s most advanced networking
platform.

Do you pine for a simpler time when web pages loaded in under one

second? Chicago Boss is the answer to slow server software: a Rails-like
framework for Erlang that delivers web pages to your users as quickly and

efficiently as possible.

Real world Chicago Boss application (concurix.com)
December 2012

Chicago Boss scaling

B Unoptimized

‘2Jay Sl BJS 8100AUuBW 8y |

Users/ sec

4 18 32 46

Schedulers

—

The manycore era is here.

Back to Amdanl's Law—it's all about the locks

_I
>
o)
3
)
=)
<
o)
o
S
@
@
-
©
®
-
@
-
@

10000

9000

8000

7000

‘2Jay Sl BJS 8100AUuBW 8y |

6000

5000

4000

3000

HTTP Requests per second

2000

1000

*: A different load tester was used in the December 2012 numbers, this is rough approximation of the December numbers in the new tool.

Where we are now. .. 45x+lll

April 20th Concurix.com ManyCore scaling

“NodelS
K
“#Chicago Boss Optimized
Chicago Boss Unoptimized
(approx)*

Number of Cores

We are not alone. ..

distribution of bottleneck scale by bench runs

‘2Jay S| BJo a100Auew ay |
ck likelihood (low - high)

bottlene

customer traces (0% - 100%)

Concurix has over 1.2 million (and growing!) profile
data sets.

100% of these profiles show at least 1 bottleneck
candidate

How we did it...

The manycore era is here.

‘2Jay Sl BJS 8100AUuBW 8y |

Profiling with Real Time
Visualizations and Big Data

‘2Jay Sl BJS 8100AUuBW 8y |

Gprof!

Flat profile:

Each sample counts as 0.01

% cumulative self
time seconds seconds
33.34 0.02 0.02
16.67 0.03 0.01
16.67 0.04 0.01
16.67 0.05 0.01
16.67 0.06 0.01

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

0.00 0.06 0.00

seconds.

calls
7208
244

8

-

236
192
47
45

S e e el

self total
ms/call ms/call
0.00 0.00
0.04 0.12
1.25 1.26
1.43 1.43
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 50.00
0.00 0.00
0.00 10.11
0.00 0.00
0.00 50.00

Source: http://linuxforengineers.blogspot.com/2012/07/its-time-to-speed-up-your-code-with.html

name
open
offtime
memccpy
write
mcount
tzset
tolower
strlen
strchr
main
memcpy
print
profil
report

The manycore era is here.

‘2Jay Sl BJS 8100AUuBW 8y |

Automatically detect and instrument a semantic "middie’

Not enough insight (“it’s slow”)

+ Big Data Analytics

Semantic level (e.g.

code modules)

Depth of instrumentation

Too much data—2Gz+ * 64 cores

‘2Jay Sl BJS 8100AUuBW 8y |

Measuring Similarity

If we line up the data in an ordered vector, treat the vector as a point in
N dimensional space, then similarity between data sets can be
measured by distance between the poirte

One implementation is the cosine similarity = arccos(a‘b)
Application example

n n 2
’\/Z a2k 2 b7y
k=1 k=1
Identify transitions

Data = the number of messages sent between any pair of sender-receiver, during
a time window

Vector = line up the data along all possible pairs, , like "mochiweb-to-poolboy”,
in fixed order

Data for each time window is a vector of length of NxN (N = number of
processes)

Big change in similarity between the data vectors means big shift in message
passing activity

Benchmark repeatability

1.000 0.999 0.923 0.999 benchrun-399
————— 1.000 0.917 0.999 benchrun-403
—————————— 1.000 0.910 benchrun-404
——————————————— 1.000 benchrun-406

Clustering

Grouping data points by similarity on some metric

Algorithm: repeat until converge

Assignment to clusters:
Cluster”; = {p : ||p — center® || <||p — center® ||V j <k}

Update cluster cer (t+1) _— 1
_p . cenler ! |C luster® ,-I Z p
Applications

Often used for discovery tasks when there are little prior
knowledge about data

‘2Jay Sl BJS 8100AUuBW 8y |

pECluster®,

State sequence clustering - Cluster 1 State sequence clustering - Cluster 2 State sequence clustering - Cluster 3

Example: Bucket the many g e |3 — § —
processes to a few types . 5 Fi E =
according to their activities over

time

25 seq. (n=

‘2Jay Sl BJS 8100AUuBW 8y |

Time series analysis

Use “dynamic time warping” distance to measure how well two
time series match

Diff DTW

a==>b |la—b|
INSERT Shift time out
DELETE Shift time in

Network analysis: centrality

Centrality: relative importance of a vertex in the

‘2Jay Sl BJS 8100AUuBW 8y |

network
Computation L0888 80
Degree centrality Cp(v) = degree(v) égoo ® a0
O e OO
2 o0
. c.(y) = —=u1
Closeness Centrallty ¢ ug:V shortest—distance(v ,u) @30088) C? OOO%)
960 OO o
. . 8 8 OOO 080 oo
Eigenvector centrality Coc®) =AY Cpol) ° 3 A @808 o
{uy}€E o O O @ O—0
o) ®
o 0% o ©
(©0)5) o @)
. o,(v) o ?
Betweenness centrality — Cy(v) = , ;{Z o o &0 o
S#FVFIEV o
@)) | o
Application
Detecting most important process in message passing network @

Bottleneck detection

Predictive Bottleneck Detection

Build a statistical model of how an application performs, and try to predict when
bottlenecks can occur *before* they occur.

We accomplish this by watching the relationship between events and time over
time...or:

‘2Jay Sl BJS 8100AUuBW 8y |

fit a line time = a + b * task to points {(task,, time,), (task,, time,), ..., (tasky, timey)}

1 ——\2 1 & 2
O, 0= \/ N1 E(taskl. — task) o, = \/ EZ(timei - time)

i=1 i=1

N
Z (taski — task) (timel. — time)
== b - rtask,time

13 .
task time
(N-1)o, .0, . O usk

0]

time

a = time — b * task

Bottleneck detection (simplified)

Order cars by arrival

‘2Jay Sl BJS 8100AUuBW 8y |

Later cars are delayed more

Python MapReduce Bottleneck

‘2Jay Sl BJS 8100AUuBW 8y |
2000000
|

Pipe synchronization

time

1000000
I

| |
0 5 10 15

Works cross-language: C and Erlang implemented, NodeJS soon

The manycore era is here.

Code for the bet. ..

reload_routes() ->
gen_server:call(boss_web, reload_routes).

reload_translation(Locale) ->
gen_server:call(boss_web, {reload_translation, Locale}).

reload_all_translations() ->
gen_server:call(boss_web, reload_all_translations).

reload_init_scripts() ->
gen_server:call(boss_web, reload_init_scripts).

get_all_routes() ->
gen_server:call(boss_web, get_all_routes).

‘2J8y Sl BJS 8100A

get_all_models() ->
gen_server:call(boss_web, get_all_models).

get_all_applications() ->
gen_server:call(boss_web, get_all_applications).

base_url(App) ->
gen_server:call(boss_web, {base_url, App}).

domains(App) ->
gen_server:call(boss_web, {domains, App}).

static_prefix(App) ->
gen_server:call(boss_web, {static_prefix, App}).

translator_pid(AppName) ->
gen_server:call(boss_web, {translator_pid, AppName}).

router_pid(AppName) ->
gen_server:call(boss_web, {router_pid, AppName}).

application_info(App) ->

gen_server:call(boss_web, {application_info, App}).

(%2)
(%)
@)
o
@)
on
S
=
=
)

Message passing between processes

The manycore era is here.

Excessive Memory Usage

memory usage by service

249y Sl eJo alodAuew ay |

ChicagoBoss
boss_session_mock_controller:init/1
(<0.72.0>)

17,776,100 words

inets-5.9.1
httpc_handler:init/1
(<0.17755.2>)
2,178,309 words

Uneven CPU Core utilization

reductions by scheduler

L -~ preloaded (code_server) peye—

3 preloaded (<0.3.0) I
4 In L -3 I

5 kernel (<0.25.0>)

-h
|

schedulers (cores)

N

‘2Jay Sl BJS 8100AUuBW 8y |

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000
reductions

Use the +sbt nnts flag to lock threads to schedulers!

Try it yourself--Erfang!

1. Add concurix_runtime to your rebar.config file:

*8J9y Sl BJS 8100AuBW 8y |

2. Start the concurix_runtime system:

3. Navigate to http://concurix.com/main/bench

| v

ERLANG

Try it yourself--NodedS! (avalable mid May, 2013)

1. Install the Concurix NodedS runtime:

2. Start the concurix_runtime system:

3. Navigate to http://concurix.com/main/bench

*8J9y Sl BJS 8100AuBW 8y |

Promising future

More languages / frameworks

@ python’ C

More Scenarios: cyber-security detection?
7 2\
(e
N 4

ANONYMOUS

n. We do ”b
V\ dn Hngtlpt

‘2Jay Sl BJS 8100AUuBW 8y |

g

‘2Jay Sl BJS 8100AUuBW 8y |

AImost. ..

even very paralelizable workloads had trouble scaling

Mandelbrot throughput

16,000,000 M Stock Erlang R15B01,
FreeBSD 9

Concurix Aug 8
Concurix June 25

12,000,000

8,000,000

Cells/second

4,000,000

Alfter a bit of work., . ..

Mandelbrot throughput

16,000,000 B Stock
B Concurix Aug 8
Concurix June 25

12,000,000

‘2Jay Sl BJS 8100AUuBW 8y |

8 000,000

Cells/second

