
LLNL-PRES-549691
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The Salishan Conference on High Speed Computing
April 24, 2012

Lawrence Livermore National Laboratory LLNL-PRES-549691
2

  Algorithmic-based fault tolerance (ABFT)
•  Application fault vulnerability models
—  Fault injection studies
—  Compiler assisted analysis
—  Target use of expensive solutions

•  Solvers that detect and correct errors
•  Targeted techniques for specific applications
•  Statistical error detection techniques
•  Automation of resilience transformations

  Checkpoint/restart too slow even on
current large-scale systems

  Reduce current checkpoint times
•  In-memory techniques
•  Compression of existing checkpoints
•  Compression across tasks

•  Coordinate checkpoints across task subsets
•  Limit scope of restart

Parallel File
System

Per-routine profiles used to
simulate errors in all locations

Lawrence Livermore National Laboratory LLNL-PRES-549691
3

  Simple, portable API integrates around
application’s checkpoint code

  Instructs application to write checkpoint files
to storage local to each compute node
•  RAM disk, SSD, hard drive, etc.

  Applies redundancy scheme to withstand
common failures
•  Local, Partner, or XOR

  Also writes checkpoints to parallel file system

  Upon failure:
•  Kills current job
•  Finds most recent checkpoint
•  Rebuilds missing files and distributes files

among compute nodes
•  Restarts job

0

0

1

1

2

2

3

3

0

0

1

1

2

2

3

3

3 0 1 2

0

0

1

1

2

2

3

3

XOR :0 XOR :1 XOR :2 XOR :3

L ocal

P artner

XOR

C heckpoint file s tored on each node.

MP I rank on each node.

Lawrence Livermore National Laboratory LLNL-PRES-549691
4

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 992

G
B/
s

Nodes

Local RAM disk
Partner RAM disk
XOR RAM disk
Local SSD
XOR SSD
Partner SSD
Lustre (10GB/s peak)

Parallel file system
built for 10GB/s

SSDs 10x
faster than
PFS

Partner / XOR on
RAM disk 100x

Local on RAM
disk 1,000x

Drop in performance of
XOR on RAM disk due to

network contention.

Lawrence Livermore National Laboratory LLNL-PRES-549691
5

  SCR:
•  Dramatically increases utilization
•  In pF3D production use

  Used pF3D reliability data with novel Markov
Model to explore future design space for local storage
•  Predictions highly accurate for current systems (Atlas and Coastal)
•  Multilevel checkpointing significantly alleviates burden on parallel file system
•  Model demonstrates that allocating extra (idle) nodes for restart of failed

processes will usually improve overall utilization with SCR

Lawrence Livermore National Laboratory LLNL-PRES-549691
6

Parallel File System

Contention

Lawrence Livermore National Laboratory LLNL-PRES-549691
7

Parallel File System

“Forest” of writers

Lawrence Livermore National Laboratory LLNL-PRES-549691
8

  Overlay
network uses
a single writer

  Both
strategies
write every
checkpoint to
the parallel file
system

0

5

10

15

20

25

30

35

40

144 288 576 1152 2304 4608 9216

Ti
m

e
(s

ec
on

ds
)

Number of Processes

Overlay-based approach

File per process

Lawrence Livermore National Laboratory LLNL-PRES-549691
9

Parallel File System

A0
=

A1
=

A2
=

A3
=

Partition array A

Interleave array A

Compress array A
 ~70%

reduction in
checkpoint

file size!
  Interleave like with like data

from checkpoints across tasks
  Apply compression algorithm

targeted to data type

Lawrence Livermore National Laboratory LLNL-PRES-549691
10

0 
200 
400 
600 
800 

1000 
1200 

Ca
se
 1
 

Ca
se
 2
 

Ca
se
 3
 

Ca
se
 4
 

m
cr
En
gi
ne

 

Ca
se
 1
 

Ca
se
 2
 

Ca
se
 3
 

Ca
se
 4
 

m
cr
En
gi
ne

 

154MB per ckpt  48MB per ckpt  40MB 
per ckpt 

87MB per ckpt  73.88MB per ckpt  37.3MB 
per ckpt 

ALE3D  Cactus 

O
ve
rh
ea
d 
(s
ec
on

ds
) 

Local‐read  Collect+process‐Header 

Fetch+Merge+Compress+Local‐write  Parallel‐Gzip 

PFS‐xfer 

Lawrence Livermore National Laboratory LLNL-PRES-549691
11

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

Ca
se
 1
 

Ca
se
 2
 

Ca
se
 3
 

Ca
se
 4
 

m
cr
En
gi
ne

 

Ca
se
 1
 

Ca
se
 2
 

Ca
se
 3
 

Ca
se
 4
 

m
cr
En
gi
ne

 

154MB  48MB per ckpt  40MB 
per ckpt 

87MB  73.88MB per ckpt  37.3MB 
per ckpt 

ALE3D  Cactus 

O
ve
rh
ea
d 
(s
ec
) 

pfs‐to‐localDisk  gzipDecomp  localRead 

dsetDecomp  dsetSplit+localWrite  sendCkpt 

Lawrence Livermore National Laboratory LLNL-PRES-549691
12

  Tools to detect failures and to identify their causes

  Mechanisms to assess application vulnerability
•  Fault injection experiments
•  Evaluate improvements from hand transformations

  ROSE translators to automate transformations
•  Modular redundancy
•  Other techniques under consideration

  User annotations to guide translators
•  Identify regions, operations likely needing protection
•  Define possible protection mechanisms

  Autotune application of transformations

Lawrence Livermore National Laboratory LLNL-PRES-549691
13

  Our graph compression and scalable
outlier detection enables automatic bug isolation in:
~ 6 seconds with 6,000 tasks on Intel hardware
~ 18 seconds at 103,000 cores on BG/P

  Logarithmic scaling implies billions of tasks will still take less than 10
seconds

  We are developing new on-node performance models to target resilience
problems as well as debugging

State compression/
noise reduction

Abnormal run

Concise model
of control flow

PMPI measurement creates
on-node control-flow model

Scalable Outlier Detection
KNN CAPEK

Lawrence Livermore National Laboratory LLNL-PRES-549691
14

Figure 1: Progress dependence graph example.

2. OVERVIEW OF THE APPROACH

2.1 Progress Dependence Graph
A progress-dependence graph (PDG) represents de-

pendencies that prevent tasks from making further ex-
ecution progress at any given point in time. A PDG fa-
cilitates pinpointing performance faults that cause fail-
ures such as program stalls, deadlocks and slow code re-
gions, and in performance tuning the application (e.g.,
by highlighting tasks with the least progress).

A PDG starts with the observation that two or more
tasks must execute an MPI collective in order for (all
of) them to move forward in the execution flow. For
example, MPI_Reduce is often implemented in MPI us-
ing a binomial tree for short messages [28]. Since the
MPI standard does not require collectives to be syn-
chronizing, some task could enter and leave this state
— the MPI_Reduce function call — while others remain
in it. Tasks that only send messages in the binomial
tree enter and leave this state, while tasks that receive
(and later send) messages block in this state until the
corresponding sender arrives. These blocked tasks are
progress dependent on other (possibly delayed) tasks.

This definition formalizes progress dependence: Let
the set of tasks that participate in a collective operation
be X. If a task subset Y ⊆ X has reached the collective
operation while another tasks subset Z ⊆ X, where X =
Y ∪ Z has not yet reached it at time t such that the
tasks in Y blocked at t waiting for tasks in Z then Y is

progress-dependent on Z, which we denote as Y
pd−→ Z.

Figure 1 shows an example PDG in which task a
blocks in (computation code) line 10. Task a could
block for many reasons, such as a deadlock due to in-
correct thread-level synchronization. As a consequence,
a group of tasks B block in MPI_Bcast in line 10 while
other tasks proceed to other code regions — tasks group
C, D and E block in code lines 15, 17, and 20. No
progress-dependence exists between groups C and E be-
cause they are in different execution branches.

Point-to-Point Operations: In blocking point-
to-point operations such as MPI_Send and MPI_Recv,

the dependence is only on the peer task which we for-
malize as follows: If task x blocks when sending (re-
ceiving) a message to (from) task y at time t then x

is progress dependent on y, i.e., x
pd−→ y. This def-

inition also applies to nonblocking operations such as
MPI_Isend and MPI_Irecv. The main difference is that
the dependence does not apply directly to the send
(or receive) operation, but to the associated completion
(e.g., a wait or test operation). If a task x blocks on
MPI_Wait, for example, we infer the task y, on which x is
progress dependent, from the request on which x waits.
Similarly, if x spins on a test, for example by calling
MPI_Test, we infer the peer task on which x is progress
dependent from the associated request. On the receiv-
ing end, we can also infer the dependence from other
test operations such as MPI_Probe or MPI_Iprobe. In

any case, we denote the progress dependence as x
pd−→ y.

PDG-Based Diagnosis: A PDG can intuitively
pinpoint the task (or task group) that originates a per-
formance failure. In Figure 1, task a can be blamed for
originating the program’s stall since it has no progress
dependence on any other task (or group of tasks) in the
PDG. It is also the least progressed (LP) task.

From the application developer’s point of view, the
PDG graph provides useful information in debugging,
testing and performance tuning. First, given a perfor-
mance failure such as the one in Figure 1, the PDG
directly shows where to focus attention, i.e., the LP
tasks. Thus, debugging time is substantially reduced,
as the developer can now focus on the execution context
of one (or a few) task(s) rather than on possibly thou-
sands of tasks. Second, we can efficiently apply static
or dynamic bug-detection techniques based on the state
of the LP tasks. PDI applies program slicing [32] us-
ing the state of the LP task (e.g., stack variables and
program counter) as an initial criterion, which substan-
tially reduces the search space of program slicing when
compared to slicing the execution context of each task
(or representative task group) separately and then com-
bining this information to try to find the fault.

PDG Versus Other Dependency Graphs: A
PDG is different from the dependency graph used in
MPI deadlock detection [17, 18, 29]. A PDG hierarchi-
cally describes the execution progress of MPI tasks. It
addresses questions such as: What is the task with the
least progress? Which tasks does the LP task prevent
from making progress? In contrast, traditional depen-
dency graphs can detect real and potential deadlocks
by searching for knots in the graph. We cannot detect
deadlocks by checking for knots in a PDG. However,
since a PDG combines progress dependencies arising
from MPI operations, it can indicate that a deadlock
caused a hang. Performance failures are a superset of
hangs; deadlocks or other causes can lead to hangs. Our
case study with a real-world bug in Section 5.1 shows

2

  AutomaDeD finds:
•  Anomalous processes
•  Anomalous SMM

transitions

  Programmers need
insight: what code led to failure?

  Need distributed dependence information
to understand distributed hangs

  We use progress dependence to provide that insight
•  Dynamic detection of MPI dependences
•  Similar to postdominance
—  Progress dependence does not require an exit node
—  May not have exit nodes in dynamic call tree, especially with a failure

Lawrence Livermore National Laboratory LLNL-PRES-549691
15

  Full process has O(log(P)) complexity
  Distributed analysis requires < 0.5 sec on 32,768 processes
  Gives programmers insight into the exact lines that could have

caused a hang.
  We use DynInst’s backward slicing at the root to find likely causes

Figure 2: Overview of the diagnosis work flow.

an example in which we use a PDG to identify that a
deadlock was the root cause of a hang.

2.2 Workflow of Our Approach
Figure 2 shows the steps in PDI to diagnose perfor-

mance problems. Steps 1–3 are distributed while steps
4–6 are performed in a single task.

(1) Model creation. PDI captures per-MPI-task
control-flow behavior of in a Markov model (MM). MM
states correspond to two code region types: communica-
tion regions, i.e., code executed within an MPI function;
and computation regions, i.e., code executed between
two MPI functions. Other work uses similar Markov-
like models (in particular semi-Markov models) to find
similariteis between tasks to detect errors [9, 21]. PDI
instead uses MMs to summarize control-flow execution
history. To the best of our knowledge, no prior work
uses MMs to infer progress dependencies.

(2) Distributed PDG creation. When we detect
a performance fault, PDI uses a distributed algorithm
to create a PDG in each task. First, we use an all-
reduce over the MM state of each task, which provides
each task with the state of all other tasks. Formally, if
a task’s local state is slocal, this operation provides each
task with the set Sothers = s1, . . . , sj , . . . , sN , where
sj != slocal. Next, each task probabilistically infers its
own local PDG based on slocal and Sothers.

(3) PDG reduction. Our next distributed step re-
duces the PDGs from step (2) to a single PDG. The
reduction operation is the union of edges in two PDGs,
i.e., the union of progress dependencies.

(4) LP task detection. Based on the reduced PDG,
we determine the LP task and its state (i.e., call stack
and program counter), which we use in the next step.

(5) Backward slicing. We then perform backward
slicing using Dyninst [3]. This step finds code that could
have led the LP task to reach its current state.

(6) Visualization. Finally, PDI presents the pro-
gram slice, the reduced PDG and its associated informa-
tion. The user can attach a serial of parallel debugger to
the LP task based on the PDG. The PDG also provides
other task groups and their dependencies. The slice
brings programmers’ attention to code that affected the
LP task, and allows them to find the fault.

Figure 3: Markov model creation.

3. DESIGN

3.1 Summarizing Execution History
A simple approach to save the control-flow execution

history directly might build a control-flow graph (CFG)
based on executed statements [XXX]. Since large-scale
MPI applications can have very large CFGs, PDI in-
stead captures a compressed version of the control-flow
behavior using our MM with communication and com-
putation states. The edge weights capture capture the
frequency of transitions between two states. Figure 3
shows how PDI creates MMs at runtime in each task.
We use the MPI profiling interface to intercept MPI
routines. Before and after calling the corresponding
PMPI routine, PDI captures information such as the
call stack, offset address within each active function and
return address. We assume that the MPI program is
compiled using debugging information so that we can
resolve function names.

3.2 Progress Dependence Inference
In this section, we discuss how we infer progress de-

pendence from our MMs. For simplicity, we restrict the
discussion to dependences that arise from collective op-
erations. The process is similar for point-to-point oper-
ations although the MM states in the following discus-
sion must reflect send/receive relationships. PDI prob-
abilistically infers progress dependence between a task’s

3

Lawrence Livermore National Laboratory LLNL-PRES-549691
16

  AMG solves linear systems of equations
derived from the discretization of PDEs.

  AMG is an iterative method that operates on
nested grids of varying refinement.

  Two operators (restriction and interpolation)
propagate linear system through the grids.

  Identify vulnerable data and code regions.
  Design and implement simple and

effective resilience strategies to improve
vulnerability of sensitive pieces of code.

  Long term: develop a general
methodology to automatically improve
the reliability of generic HPC codes.

  Developed of a methodology to
automatically inject faults to assess the
vulnerability of codes to soft errors.

  Performed a vulnerability study of AMG.

  Determined that AMG is most vulnerable
to soft errors in pointer arithmetic, which
lead to fatal segmentation faults.

  Demonstrated that triple modular
redundancy in pointer calculations
reduces the vulnerability of AMG to soft
errors

  Subject of paper to appear at ICS 2012 AMG algorithmic structure

Lawrence Livermore National Laboratory LLNL-PRES-549691
17

•  Our analysis provides a vulnerability profile of each phase:

•  Extensive fault injection campaign
•  3 main AMG phases

•  7 fault injection rates for each phase
•  10,000 executions for each phase and

fault injection rate

Lawrence Livermore National Laboratory LLNL-PRES-549691
18

•  Numeric errors smoothed out
•  The error spreads among

the variables when
execution returns to the
finest levels.

•  The correction on the
coarsest grids is more
significant than the
subsequent contamination

•  AMG’s coarsening
smoothes out the effects of
large local errors

•  Other errors induce
segmentation faults

Lawrence Livermore National Laboratory LLNL-PRES-549691
19

•  Pointer replication
•  mantains multiple copies of each

replicated pointer
•  compares them before every memory

access

•  Three copies are kept in our experiments

Lawrence Livermore National Laboratory LLNL-PRES-549691
20

Relaxation

Restriction

Interpolation

Lawrence Livermore National Laboratory LLNL-PRES-549691
21

  Some question whether the sky is falling
•  Reduction in file system bandwidth relative to memory size
•  MTTI likely to decrease

  New resilience strategies will be essential
•  Provide critical checkpoint/restart efficiency improvements
•  Must understand fault vulnerability to address it appropriately
•  Must detect failures in order to respond to them
•  Must automate resilience transformations and trade-off

assessment

