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  Algorithmic-based fault tolerance (ABFT) 
•  Application fault vulnerability models 
—  Fault injection studies 
—  Compiler assisted analysis 
—  Target use of expensive solutions 

•  Solvers that detect and correct errors 
•  Targeted techniques for specific applications 
•  Statistical error detection techniques 
•  Automation of resilience transformations 

  Checkpoint/restart too slow even on  
current large-scale systems 

  Reduce current checkpoint times 
•  In-memory techniques 
•  Compression of existing checkpoints 
•  Compression across tasks 

•  Coordinate checkpoints across task subsets 
•  Limit scope of restart 

Parallel File  
System 

Per-routine profiles used to  
simulate errors in all locations 
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  Simple, portable API integrates around 
application’s checkpoint code 

  Instructs application to write checkpoint files 
to storage local to each compute node 
•  RAM disk, SSD, hard drive, etc. 

  Applies redundancy scheme to withstand 
common failures 
•  Local, Partner, or XOR 

  Also writes checkpoints to parallel file system 

  Upon failure: 
•  Kills current job 
•  Finds most recent checkpoint 
•  Rebuilds missing files and distributes files 

among compute nodes 
•  Restarts job 
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  SCR: 
•  Dramatically increases utilization 
•  In pF3D production use 

  Used pF3D reliability data with novel Markov  
Model to explore future design space for local storage 
•  Predictions highly accurate for current systems (Atlas and Coastal)  
•  Multilevel checkpointing significantly alleviates burden on parallel file system 
•  Model demonstrates that allocating extra (idle) nodes for restart of failed 

processes will usually improve overall utilization with SCR 
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Parallel File System 

Contention



Lawrence Livermore National Laboratory LLNL-PRES-549691 
7 

Parallel File System 

“Forest” of writers
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  Overlay 
network uses 
a single writer 

  Both 
strategies 
write every 
checkpoint to 
the parallel file 
system 
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Parallel File System 
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Partition array A 


Interleave array A 


Compress array A 
 ~70% 

reduction in 
checkpoint 

file size!
  Interleave like with like data 

from checkpoints across tasks 
  Apply compression algorithm 

targeted to data type 
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  Tools to detect failures and to identify their causes 

  Mechanisms to assess application vulnerability 
•  Fault injection experiments 
•  Evaluate improvements from hand transformations 

  ROSE translators to automate transformations 
•  Modular redundancy 
•  Other techniques under consideration  

  User annotations to guide translators 
•  Identify regions, operations likely needing protection 
•  Define possible protection mechanisms 

  Autotune application of transformations 
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  Our graph compression and scalable  
outlier detection enables automatic bug isolation in: 
~ 6 seconds with 6,000 tasks on Intel hardware 
~ 18 seconds at 103,000 cores on BG/P 

  Logarithmic scaling implies billions of tasks will still take less than 10 
seconds 

  We are developing new on-node performance models to target resilience 
problems as well as debugging 

State compression/ 
noise reduction 

Abnormal run 

Concise model 
of control flow 

PMPI measurement creates 
on-node control-flow model 

Scalable Outlier Detection 
KNN CAPEK 
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Figure 1: Progress dependence graph example.

2. OVERVIEW OF THE APPROACH

2.1 Progress Dependence Graph
A progress-dependence graph (PDG) represents de-

pendencies that prevent tasks from making further ex-
ecution progress at any given point in time. A PDG fa-
cilitates pinpointing performance faults that cause fail-
ures such as program stalls, deadlocks and slow code re-
gions, and in performance tuning the application (e.g.,
by highlighting tasks with the least progress).

A PDG starts with the observation that two or more
tasks must execute an MPI collective in order for (all
of) them to move forward in the execution flow. For
example, MPI_Reduce is often implemented in MPI us-
ing a binomial tree for short messages [28]. Since the
MPI standard does not require collectives to be syn-
chronizing, some task could enter and leave this state
— the MPI_Reduce function call — while others remain
in it. Tasks that only send messages in the binomial
tree enter and leave this state, while tasks that receive
(and later send) messages block in this state until the
corresponding sender arrives. These blocked tasks are
progress dependent on other (possibly delayed) tasks.

This definition formalizes progress dependence: Let
the set of tasks that participate in a collective operation
be X. If a task subset Y ⊆ X has reached the collective
operation while another tasks subset Z ⊆ X, where X =
Y ∪ Z has not yet reached it at time t such that the
tasks in Y blocked at t waiting for tasks in Z then Y is

progress-dependent on Z, which we denote as Y
pd−→ Z.

Figure 1 shows an example PDG in which task a
blocks in (computation code) line 10. Task a could
block for many reasons, such as a deadlock due to in-
correct thread-level synchronization. As a consequence,
a group of tasks B block in MPI_Bcast in line 10 while
other tasks proceed to other code regions — tasks group
C, D and E block in code lines 15, 17, and 20. No
progress-dependence exists between groups C and E be-
cause they are in different execution branches.

Point-to-Point Operations: In blocking point-
to-point operations such as MPI_Send and MPI_Recv,

the dependence is only on the peer task which we for-
malize as follows: If task x blocks when sending (re-
ceiving) a message to (from) task y at time t then x

is progress dependent on y, i.e., x
pd−→ y. This def-

inition also applies to nonblocking operations such as
MPI_Isend and MPI_Irecv. The main difference is that
the dependence does not apply directly to the send
(or receive) operation, but to the associated completion
(e.g., a wait or test operation). If a task x blocks on
MPI_Wait, for example, we infer the task y, on which x is
progress dependent, from the request on which x waits.
Similarly, if x spins on a test, for example by calling
MPI_Test, we infer the peer task on which x is progress
dependent from the associated request. On the receiv-
ing end, we can also infer the dependence from other
test operations such as MPI_Probe or MPI_Iprobe. In

any case, we denote the progress dependence as x
pd−→ y.

PDG-Based Diagnosis: A PDG can intuitively
pinpoint the task (or task group) that originates a per-
formance failure. In Figure 1, task a can be blamed for
originating the program’s stall since it has no progress
dependence on any other task (or group of tasks) in the
PDG. It is also the least progressed (LP) task.

From the application developer’s point of view, the
PDG graph provides useful information in debugging,
testing and performance tuning. First, given a perfor-
mance failure such as the one in Figure 1, the PDG
directly shows where to focus attention, i.e., the LP
tasks. Thus, debugging time is substantially reduced,
as the developer can now focus on the execution context
of one (or a few) task(s) rather than on possibly thou-
sands of tasks. Second, we can efficiently apply static
or dynamic bug-detection techniques based on the state
of the LP tasks. PDI applies program slicing [32] us-
ing the state of the LP task (e.g., stack variables and
program counter) as an initial criterion, which substan-
tially reduces the search space of program slicing when
compared to slicing the execution context of each task
(or representative task group) separately and then com-
bining this information to try to find the fault.

PDG Versus Other Dependency Graphs: A
PDG is different from the dependency graph used in
MPI deadlock detection [17, 18, 29]. A PDG hierarchi-
cally describes the execution progress of MPI tasks. It
addresses questions such as: What is the task with the
least progress? Which tasks does the LP task prevent
from making progress? In contrast, traditional depen-
dency graphs can detect real and potential deadlocks
by searching for knots in the graph. We cannot detect
deadlocks by checking for knots in a PDG. However,
since a PDG combines progress dependencies arising
from MPI operations, it can indicate that a deadlock
caused a hang. Performance failures are a superset of
hangs; deadlocks or other causes can lead to hangs. Our
case study with a real-world bug in Section 5.1 shows

2

  AutomaDeD finds: 
•  Anomalous processes 
•  Anomalous SMM  

transitions 

  Programmers need 
insight: what code led to failure? 

  Need distributed dependence information  
to understand distributed hangs 

  We use progress dependence to provide that insight 
•  Dynamic detection of MPI dependences 
•  Similar to postdominance 
—  Progress dependence does not require an exit node 
—  May not have exit nodes in dynamic call tree, especially with a failure 
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  Full process has O(log(P)) complexity 
  Distributed analysis requires < 0.5 sec on 32,768 processes 
  Gives programmers insight into the exact lines that could have 

caused a hang. 
  We use DynInst’s backward slicing at the root to find likely causes 

Figure 2: Overview of the diagnosis work flow.

an example in which we use a PDG to identify that a
deadlock was the root cause of a hang.

2.2 Workflow of Our Approach
Figure 2 shows the steps in PDI to diagnose perfor-

mance problems. Steps 1–3 are distributed while steps
4–6 are performed in a single task.

(1) Model creation. PDI captures per-MPI-task
control-flow behavior of in a Markov model (MM). MM
states correspond to two code region types: communica-
tion regions, i.e., code executed within an MPI function;
and computation regions, i.e., code executed between
two MPI functions. Other work uses similar Markov-
like models (in particular semi-Markov models) to find
similariteis between tasks to detect errors [9, 21]. PDI
instead uses MMs to summarize control-flow execution
history. To the best of our knowledge, no prior work
uses MMs to infer progress dependencies.

(2) Distributed PDG creation. When we detect
a performance fault, PDI uses a distributed algorithm
to create a PDG in each task. First, we use an all-
reduce over the MM state of each task, which provides
each task with the state of all other tasks. Formally, if
a task’s local state is slocal, this operation provides each
task with the set Sothers = s1, . . . , sj , . . . , sN , where
sj != slocal. Next, each task probabilistically infers its
own local PDG based on slocal and Sothers.

(3) PDG reduction. Our next distributed step re-
duces the PDGs from step (2) to a single PDG. The
reduction operation is the union of edges in two PDGs,
i.e., the union of progress dependencies.

(4) LP task detection. Based on the reduced PDG,
we determine the LP task and its state (i.e., call stack
and program counter), which we use in the next step.

(5) Backward slicing. We then perform backward
slicing using Dyninst [3]. This step finds code that could
have led the LP task to reach its current state.

(6) Visualization. Finally, PDI presents the pro-
gram slice, the reduced PDG and its associated informa-
tion. The user can attach a serial of parallel debugger to
the LP task based on the PDG. The PDG also provides
other task groups and their dependencies. The slice
brings programmers’ attention to code that affected the
LP task, and allows them to find the fault.

Figure 3: Markov model creation.

3. DESIGN

3.1 Summarizing Execution History
A simple approach to save the control-flow execution

history directly might build a control-flow graph (CFG)
based on executed statements [XXX]. Since large-scale
MPI applications can have very large CFGs, PDI in-
stead captures a compressed version of the control-flow
behavior using our MM with communication and com-
putation states. The edge weights capture capture the
frequency of transitions between two states. Figure 3
shows how PDI creates MMs at runtime in each task.
We use the MPI profiling interface to intercept MPI
routines. Before and after calling the corresponding
PMPI routine, PDI captures information such as the
call stack, offset address within each active function and
return address. We assume that the MPI program is
compiled using debugging information so that we can
resolve function names.

3.2 Progress Dependence Inference
In this section, we discuss how we infer progress de-

pendence from our MMs. For simplicity, we restrict the
discussion to dependences that arise from collective op-
erations. The process is similar for point-to-point oper-
ations although the MM states in the following discus-
sion must reflect send/receive relationships. PDI prob-
abilistically infers progress dependence between a task’s

3
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  AMG solves linear systems of equations 
derived from the discretization of PDEs. 

  AMG is an iterative method that operates on 
nested grids of varying refinement. 

  Two operators (restriction and interpolation) 
propagate linear system through the grids. 

  Identify vulnerable data and code regions. 
  Design and implement simple and 

effective resilience strategies to improve 
vulnerability of sensitive pieces of code. 

  Long term: develop a general 
methodology to automatically improve 
the reliability of generic HPC codes. 

  Developed of a methodology to 
automatically inject faults to assess the 
vulnerability of codes to soft errors. 

  Performed a vulnerability study of AMG. 

  Determined that AMG is most vulnerable 
to soft errors in pointer arithmetic, which 
lead to fatal segmentation faults. 

  Demonstrated that triple modular 
redundancy in pointer calculations 
reduces the vulnerability of AMG to soft 
errors 

  Subject of paper to appear at ICS 2012 AMG algorithmic structure 
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•  Our analysis provides a vulnerability profile of each phase: 

•  Extensive fault injection campaign  
•  3 main AMG phases 

•  7 fault injection rates for each phase 
•  10,000 executions for each phase and 

fault injection rate 
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•  Numeric errors smoothed out 
•  The error spreads among 

the variables when 
execution returns to the 
finest levels. 

•  The correction on the 
coarsest grids is more 
significant than the 
subsequent contamination 

•  AMG’s coarsening 
smoothes out the effects of 
large local errors 

•  Other errors induce 
segmentation faults 
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•  Pointer replication 
•  mantains multiple copies of each 

replicated pointer 
•  compares them before every memory 

access  

•  Three copies are kept in our experiments 



Lawrence Livermore National Laboratory LLNL-PRES-549691 
20 

Relaxation 

Restriction 

Interpolation 
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  Some question whether the sky is falling 
•  Reduction in file system bandwidth relative to memory size 
•  MTTI likely to decrease 

  New resilience strategies will be essential 
•  Provide critical checkpoint/restart efficiency improvements 
•  Must understand fault vulnerability to address it appropriately 
•  Must detect failures in order to respond to them 
•  Must automate resilience transformations and trade-off 

assessment 




