Resilience Strategies for Future Systems

The Salishan Conference on High Speed Computing
April 24, 2012

Bronis R. de SupinskKi

|!| Lawrence Livermore

National Laboratory

LLNL-PRES-549691

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

We are developing a comprehensive strategy for
application resilience on large-scale systems

= Checkpoint/restart too slow even on
current large-scale systems

- = Reduce current chgckpomt times
== In-memory techniques
Compress!on of existing checkpoints
e Compression across tasks
e Coordinate checkpoints across task subsets
e Limit scope of restart

Parallel File |
System - -

= Algorithmic-based fault tolerance (ABFT)

» Application fault vulnerability models
— Fault injection studies
— Compiler assisted analysis
— Target use of expensive solutions
» Solvers that detect and correct errors
« Targeted techniques for specific applications
« Statistical error detection techniques
» Automation of resilience transformations

Per-routine profiles used to
simulate errors in all locations

Lot
X/
x|
)
"

T
T

Lawrence Livermore National Laboratory LLNL-PRES-5496921LLL

SCR provides an easy-to-use
multi-level checkpoint mechanism

MP | rank on each node.

Local

Partner

XOR

/ \
oolollo
SRRV,

(-

()

()

Checkpoint file stored on each node.

(+)

0

1

2

3

(-

()

(-

(-

0

1

2

3

|XOR:0]

|XOR:1]

|XOR:2]

|XOR:3]

Simple, portable API integrates around
application’s checkpoint code

Instructs application to write checkpoint files
to storage local to each compute node

- RAM disk, SSD, hard drive, etc.

Applies redundancy scheme to withstand
common failures

« Local, Partner, or XOR
Also writes checkpoints to parallel file system

Upon failure:
« Kills current job
« Finds most recent checkpoint

- Rebuilds missing files and distributes files
among compute nodes

- Restarts job

Lawrence Livermore National Laboratory

1
LLNL-PRES-549691 L

Node-local aggregate checkpoint
scales linearly on Coastal

“#-Local RAM disk 10000 €——

Partner RAM disk Local on RAM
-<XOR RAM disk disk 1,000x
-¢-Local SSD

XOR SSD 000€——
—«Partner SSD Partner / XOR on

Lustre (10GB/s peak) RAM disk 100x

Drop in performance of 10x
XOR on RAM disk due to
network contention.

T—

Parallel file system
built for 10GB/s
1

than

0.1
4 8 16 32 64 128 256 512 992
Nodes

Lawrence Livermore National Laboratory T

We have formulated a novel Markov model to predict
the optimal checkpoint interval at each level

X(3,3)
Y(3,3)
Y(2,2) 7(2,3)
X(2,2) X(2,3)
= SCR: Y(1,1) «12) Y(22) Yoy
Y(,1) Z(1,2) Y(L) z@13)
i . i . X(LD) X(1,1) X(1.2) X(1,1) X(1,1) X(1.2) X(1,1) X(1,1) X(1,3)
- Dramatically increases utilization
. 1 112 11/l 2 11 P13 »1---
« In pF3D production use 000 000 000
(2] (2]
(3) ©

= Used pF3D reliability data with novel Markov
Model to explore future design space for local storage

« Predictions highly accurate for current systems (Atlas and Coastal)
« Multilevel checkpointing significantly alleviates burden on parallel file system

« Model demonstrates that allocating extra (idle) nodes for restart of failed
processes will usually improve overall utilization with SCR

PEID FAILUKES ON THREE DIFFERENT CLUSTERS

Clusters Coastal Hera Atlas Tozal

Time span Oct 09 - Mar 10 | Nov 08 - Nov 09 | May 08 - Oct 09
Number of jobs 135 155 28] 871
Node hours 2.830,803 1 428,547 1,370,583 5,629,933
Total failures 24 87 80 19]
“AL required 2 (O8%) 16 (419%) 2] (26%) 59 (31%)
PARTNER/XCR required I8 (75%) 312 (37%) 54 (68%) 104 (549%)
re required 4 (17%) 19 (22%) 5 (06%) 28 (15%)

Lawrence Livermore National Laboratory LLNL-PRES-54969?LLL

Current SCR implementation can still suffer from
parallel file system contention and meta-data bottleneck

00000000000000000000000000000000

Contention
N \S\\\"V/V"” 4

Parallel File System

Lawrence Livermore National Laboratory TR

Our prototype overlay network solution reduces the
bottleneck and supports our compression strategy

Parallel File System

Lawrence Livermore National Laboratory NPRres5es L

Initial results demonstrate this strategy will
improve average total I/O time per checkpoint

40

35

Time (seconds)
- - N N w
Ol o (@) o ol o

o

® Overlay-based approach

® File per process

JJJJJJ

2304 4608 9216
Number of Processes

1152

= Qverlay
network uses
a single writer

Both
strategies
write every
checkpoint to
the parallel file
system

Lawrence Livermore National Laboratory

Data-aware cross-checkpoint compression can

jRaaan lamamess |mEmsma:

Partition array A e mEE
:J 'H ”H =o—Aware-Block =0=Aware =>=Agnostic-Block =/~ Agnostic

Interleave array A e B
3.7 e—— °

Compress array A g 3

§ 3.3 - =

- e o g 3.1
= |nterleave like with like data I (S PO P Ammmee N A

from checkpoints across tasks .

= Apply compression algorithm ﬁ 25 ‘ ‘ T T x
targeted to data type 1 ’ sz
Parallel File System

Lawrence Livermore National Laboratory R,

Compression often provides lower
end-to-end checkpointing overhead

1200
1000
800
600
400
200

Overhead (seconds)

Local-read

i
()]
(%)
©

o

Case 4 ’H

Case 2
Case 3
mcrEngine E

154MB per ckpt =~ 48MB per ckpt = 40MB
per ckpt

ALE3D

[l Fetch+Merge+Compress+Local-write L1 Parallel-Gzip
& PFS-xfer

Casel
Case 2]

87MB per ckpt

M Collect+process-Header

Case 4 ‘H

Case 3
mcrEngine ’Ell

73.88MB per ckpt 37.3MB
per ckpt

Cactus

Lawrence Livermore National Laboratory

10
LLNL-PRES-549691 LLL

Recovery overhead, which is on the
critical path, is low with compression

N pfs-to-localDisk L gzipDecomp

localRead

B dsetDecomp dsetSplit+localWrite ® sendCkpt
900
_. 800
o 700
< 600
S 500
2 400
@ 300
3 200
108 SN NN N\N
— N o < ()] i oN o < (D)
)))) = ()))) £
o © o © a0 © o © o 20
@] @] O O T @] @) O O T
G G
£ £
154MB 48MB per ckpt A0MB 87MB 73.88MB per ckpt 37.3MB
per ckpt per ckpt
ALE3D Cactus
Lawrence Livermore National Laboratory LLNL-PRES-54962911LLL

Our ABFT strategy will provide
an integrated overall solution

Tools to detect failures and to identify their causes

Mechanisms to assess application vulnerability
« Fault injection experiments
- Evaluate improvements from hand transformations

ROSE translators to automate transformations
« Modular redundancy
« Other techniques under consideration

User annotations to guide translators
- ldentify regions, operations likely needing protection
« Define possible protection mechanisms

Autotune application of transformations

Lawrence Livermore National Laboratory

We are developing AutomaDeD into a framework for

many types of distributed analysis

(P12 Q1-2) Concise model
Abnormal task of control flow
GO State compression/
XXy noise reduction (Ps, Qs.0)
X
X x X
X x X / . 0
XX XK Scalable Outlier Detection
Xy . KNN CAPEK
X /"--X.\‘
x®/ X X-/ ;
Abnormal run B XX
PMPI measurement creates B S x%
X My ;
on-node control-flow model SR A

Our graph compression and scalable

) Sample point

outlier detection enables automatic bug isolation in:
~ 6 seconds with 6,000 tasks on Intel hardware
~ 18 seconds at 103,000 cores on BG/P

Logarithmic scaling implies billions of tasks will still take less than 10
seconds

We are developing new on-node performance models to target resilience
problems as well as debugging

1¢

o
1&® f(x)=0.82In(x) - 3.07

Clustering
----- NN

T T T T
1500 3000 4500 6000 7500
Number of Tasks

Lawrence Livermore National Laboratory

13
LLNL-PRES-549691 LLL

Probabilistic application progress
supports finding root causes

AutomaDeD finds:

« Anomalous processes

« Anomalous SMM
transitions

Programmers need

Sample code

10
11
12
13
14
L5
16
17
18
19
20
21
22

// Computation code ...

MPI_Bcast(..,

/7.

if (...) {
/]
MPI_Reduce(...,
/7 ..
MPI_Barrier(comm_1);

} else {
/7.
MPI_Bcast(...,

3
/7 ..

comm_1);

comm_2);

MPI_COMM_WORLD);

insight: what code led to fallure’?

Need distributed dependence information
to understand distributed hangs

Progress dependence graph

Task a Computation
Line: 10 | code

?

Task group B Bcast

Line: 11
Task group C
Line: 15
ReduceT Task group E
Line: 20
Tasks group D
Line: 17 Beasl

Barrier

We use progress dependence to provide that insight
- Dynamic detection of MPI| dependences

« Similar to postdominance

— Progress dependence does not require an exit node
— May not have exit nodes in dynamic call tree, especially with a failure

Lawrence Livermore National Laboratory

14
LLNL-PRES-549691 LLL

Our distributed pipeline enables fast
root cause analysis

del 2. Distributed
L. Mq ¢ PDG creation 3. PDG 4. LP task
creation Error reduction detection

Detection) 100K MPI_Send

Tasks # ® ; e PDG Callstack
[2] allstac
1 2 1K I I I 120 flag = o; [@ | | RO
I I I 0) (pDG])(PDG) (PDG) [1,3] = na L
) Current \ ¢ NG } 99 if (flag==1) 1E)Osglge: .
state 205 MPT_send(); (48] [B-T00KI | | 130 #idg - o;

B —A PDG [4-8] [8-100K]

5. Backward slicing
6. Visualization

= Full process has O(log(P)) complexity
= Distributed analysis requires < 0.5 sec on 32,768 processes

= Gives programmers insight into the exact lines that could have
caused a hang.

= We use Dynlnst’s backward slicing at the root to find likely causes

Lawrence Livermore National Laboratory TR

We have analyzed the vulnerability
of algebraic multigrid (AMG)

AMG solves linear systems of equations = ldentify vulnerable data and code regions.

derived from the discretization of PDEs. = Design and implement simple and
effective resilience strategies to improve

AMG is an iterative method that operates on
vulnerability of sensitive pieces of code.

nested grids of varying refinement.

= Long term: develop a general
methodology to automatically improve
the reliability of generic HPC codes.

Two operators (restriction and interpolation)
propagate linear system through the grids.

= Developed of a methodology to
Setup Phase: automatically inject faults to assess the
vulnerability of codes to soft errors.

+ Select coarse “grids,”

« Define interpolation, P™, m=1.2,... g

« Define restriction and coarse-grid operators = Performed a vulnerability study of AMG.
R™ (: p(m)T) AM) — RM A (Mp(m)

= Determined that AMG is most vulnerable

Solve Phase: to soft errors in pointer arithmetic, which
Relax A™y™ — §" Relax AMy™ — 7 lead to fatal segmentation faults.
®_ Compute r" =" - A™y" Correct u"«u"+e" @
= Demonstrated that triple modular
N1 —R™m Interpolate e’=PMe™" redundancy in pointer calculations
Solve reduces the vulnerability of AMG to soft
O T e T > ® errors
AMG algorithmic structure = Subject of paper to appear at ICS 2012

Lawrence Livermore National Laboratory TR

We evaluate the resilience of the solver phases

Extensive fault injection campaign

3 main AMG phases

/ fault injection rates for each phase
10,000 executions for each phase and

fault injection rate

| | Restriction | Interpolation | Relaxation |

Rate 1 | 200 f, 4273 e/s | 100 f, 5128 e/s | 200 f, 1666 e/s
Rate 2 | 100 f, 2136 e/s | 50 f, 2564 e/s | 100 f, 833 e/s
Rate 3 | 20 f, 427 e/s 10 f, 513 e/s 20 f, 167 e/s
Rate 4 | 10 f, 214 e/s 5 f, 256 e/s 10 f, 83 e/s
Rate 5 21, 43 e/s 1f 51le/s 21 17 e/s
Rate 6 1f 21 e/s 0.5 f, 25 e/s 1, 9e/s
Rate 7 02f 4e/s 0.1f 5e/s 0.2f 2e/s

Our analysis provides a vulnerability profile of each phase:

% Outcome of the Executions

100 A

80

60

40

20

0

200 | 100 & 20 10 2

Restriction

Relaxation
ErrorsInjected

-#-SegFaults -B-Cycles>4 --Cycles=4

-0-Cycles=3

-_
'TTT'T'

Interpolation

Lawrence Livermore National Laboratory

17
LLNL-PRES-549691 LLL

Our results show that AMG is naturally
resilient to numeric faults

Numeric errors smoothed out z

« The error spreads among § s
the variables when I
execution returns to the £ o
finest levels. S e

2 OE+0 —o—

° The Correctllon .On the 12 3 45 6 7 I:erztiz:;l:(l71|2te1r?;tiil:nls5alrz 17(:;?]:)9 20 21 22 23 24 25 26 27 28
Coarsest grlds |S more -=-Aproximation of the solution (u vector) -—Residual (r vector)
significant than the
subsequent contamination e

= 1E+2

« AMG’s coarsening T e
smoothes out the effects of E v 100
large local errors - E

» Other errors induce E

é 1E-8

segmentation faults

123 456 7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28
Iterations (7 Iterations are 1 cycle)
-=Aproximation of the solution (u vector) -Residual (r vector)

Lawrence Livermore National Laboratory TR

We implement a simple algorithm that protects key

pointers through replication

- Pointer replication

« mantains multiple copies of each
replicated pointer

« compares them before every memory
access

Restriction

| Interpolation |

Relaxation

Rate 1 | 200 f, 4273 e/s | 100 f, 5128 e/s | 200 f, 1666 e/s
Rate 2 | 100 f, 2136 e/s | 50 f, 2564 e/s | 100 f, 833 e/s
Rate 3 [20 f, 427 e/s 10 f, 513 e/s 20 f, 167 e/s
Rate 4 | 10 f, 214 e/s 5 f, 256 e/s 10 f, 83 e/s
Rate 5 21,43 e/s 1f 51 e/s 21,17 e/s
Rate 6 1f 21 e/s 0.5 1,25 e/s 1 9e/s
Rate 7 021 4e/s 0.11f 5e/s 021 2e/s

- Three copies are kept in our experiments

Original Code of Matrix-Vector Multiplication
for(jj = A_i[i); jj < A_il[i+1]; jj++) {

y_data[i] += A_datal[jj] * x_datalA_j[jjl];

}

Transformed Code With Pointer Triplication
for(jj = A_ilil; jj < A_i[i+11; jj++) {

y_datal[i] += A_datal[jj] * x_datal[triplication(A_j, A_j_pl, A_j_p2)[jjll;

}

Lawrence Livermore National Laboratory

19
LLNL-PRES-549691 LLL

Pointer triplication is effective on a variety of inputs
and different error injection rates

100
90

! ?
80 / /
» » 7 2 » /1/ /.»wﬁ
= D /

& &

ixed

% of Segmentation
Faults Fi
o8 8388
4
LA
<§§
»

o

Interpolation

‘z

xed
v O N
o O© o

ts Fi

Faul
w
o

% of Segmentation
SFi
&

/ / / /
/ / / / /

mmmmmmmmmmmm

wwwwwwwwwwwwwwwwwwwwwwwww
aa
mmm
- AN - - - - - - - - - S - - A - - S - - S - - - S - -

% of Segmentation Faults Fixed

-i-1 pointer -4-2 pointers -#-4 pointers

Lawrence Livermore National Laboratory LLNL-PRES-549601

We are addressing the
looming resilience challenge

= Some question whether the sky is falling

« Reduction in file system bandwidth relative to memory size
« MTTI likely to decrease

= New resilience strategies will be essential
« Provide critical checkpoint/restart efficiency improvements
« Must understand fault vulnerability to address it appropriately
« Must detect failures in order to respond to them

« Must automate resilience transformations and trade-off
assessment

Lawrence Livermore National Laboratory e sl

B Lawrence Livermore
National Laboratory

