
Big Iron for Big Data: An Unnatural Alliance?

Steve Plimpton
Sandia National Labs

Salishan Conference on High-Speed Computing
April 2012

Big data analytics (BD) versus scientific simulations (SS)

Programming model:
SS: polish same code for years, tune its performance
BD: quick & dirty or agile, morph tools for data
BD: less emphasis on performance, more on programmer effort

Computational load:

SS: computation heavy (not memory or I/O bound), in-core
BD: computation light (often I/O bound), often out-of-core

Computational structure:

SS: either structured or lots of effort to load-balance
BD: often dramatically unstructured (power-law graphs)
BD: less emphasis on enforcing/exploiting data locality

Data usage & ownership:

SS: big data is an output, not an input
BD: big data is an input, maybe an output
BD: data may be sensitive or proprietary
BD: compute where data is, “own” the data

Big data analytics (BD) versus scientific simulations (SS)

Programming model:
SS: polish same code for years, tune its performance
BD: quick & dirty or agile, morph tools for data
BD: less emphasis on performance, more on programmer effort

Computational load:

SS: computation heavy (not memory or I/O bound), in-core
BD: computation light (often I/O bound), often out-of-core

Computational structure:

SS: either structured or lots of effort to load-balance
BD: often dramatically unstructured (power-law graphs)
BD: less emphasis on enforcing/exploiting data locality

Data usage & ownership:

SS: big data is an output, not an input
BD: big data is an input, maybe an output
BD: data may be sensitive or proprietary
BD: compute where data is, “own” the data

Big data analytics (BD) versus scientific simulations (SS)

Programming model:
SS: polish same code for years, tune its performance
BD: quick & dirty or agile, morph tools for data
BD: less emphasis on performance, more on programmer effort

Computational load:

SS: computation heavy (not memory or I/O bound), in-core
BD: computation light (often I/O bound), often out-of-core

Computational structure:

SS: either structured or lots of effort to load-balance
BD: often dramatically unstructured (power-law graphs)
BD: less emphasis on enforcing/exploiting data locality

Data usage & ownership:

SS: big data is an output, not an input
BD: big data is an input, maybe an output
BD: data may be sensitive or proprietary
BD: compute where data is, “own” the data

Big data analytics (BD) versus scientific simulations (SS)

Programming model:
SS: polish same code for years, tune its performance
BD: quick & dirty or agile, morph tools for data
BD: less emphasis on performance, more on programmer effort

Computational load:

SS: computation heavy (not memory or I/O bound), in-core
BD: computation light (often I/O bound), often out-of-core

Computational structure:

SS: either structured or lots of effort to load-balance
BD: often dramatically unstructured (power-law graphs)
BD: less emphasis on enforcing/exploiting data locality

Data usage & ownership:

SS: big data is an output, not an input
BD: big data is an input, maybe an output
BD: data may be sensitive or proprietary
BD: compute where data is, “own” the data

I/O needs for big data computing

Olympic metric for price: gold, silver, bronze

Gold-plated solution:

top-10 machine (petascale, ORNL Jaguar)

$100M, 224K cores

custom Spider parallel file system (Lustre)

not NFS, tuned for big-chunk read/writes
10 Pbytes, 13K disks
240 GB/sec, IOPs = ∼1M

data itself not valuable (regenerate by simulation)

code & CPU time to create it is valuable

I/O needs for big data computing

Olympic metric for price: gold, silver, bronze

Gold-plated solution:

top-10 machine (petascale, ORNL Jaguar)

$100M, 224K cores

custom Spider parallel file system (Lustre)

not NFS, tuned for big-chunk read/writes
10 Pbytes, 13K disks
240 GB/sec, IOPs = ∼1M

data itself not valuable (regenerate by simulation)

code & CPU time to create it is valuable

I/O needs for big data computing

Olympic metric for price: gold, aluminum, bronze

Aluminum-plated solution:

top-500 machine (bioinformatics cluster at Columbia U)

$2.5M, 4000 cores using data 24/7

clustered commercial NAS (Isilon, Panasas, ...)

NFS, scalable capacity, 1B small files
1 Pbyte, 1000 disks
20 Gb/sec, 500K IOPs

data generated externally (> Moore’s and Kryder’s laws)

data is highly valuable, must be easy to manage/backup

I/O needs for big data computing

Olympic metric for price: gold, aluminum, plywood

Plywood-plated solution:

Google, Facebook, Twitter = racks of cheap cores and disks

minimal $$, could not care less about top-500 and LINPACK

1+ disk/core:

scalable capacity
100 Pbytes, 100K disks (made this up)
10 TB/sec, 20M IOPs

my summer vacation photos may be valuable

much of data is not valuable (continually refreshed)

Bottom line

Medal: $/PByte TB/core PB/Pflop IOPs/PB

Gold: $10M 0.044 5 ∼100K
Aluminum: $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ∼200K

Big data computing done on aluminum and plywood

No one wants to pay gold prices to do big data computing

Don’t want to pay for compute speed & interconnect

Do want to pay for storage capacity and I/O capability

Additional issues:

run where data is produced & stored (local vs center)
data accessibility (add, delete, backup)

Bottom line

Medal: $/PByte TB/core PB/Pflop IOPs/PB

Gold: $10M 0.044 5 ∼100K
Aluminum: $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ∼200K

Big data computing done on aluminum and plywood

No one wants to pay gold prices to do big data computing

Don’t want to pay for compute speed & interconnect

Do want to pay for storage capacity and I/O capability

Additional issues:

run where data is produced & stored (local vs center)
data accessibility (add, delete, backup)

Bottom line

Medal: $/PByte TB/core PB/Pflop IOPs/PB

Gold: $10M 0.044 5 ∼100K
Aluminum: $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ∼200K

Big data computing done on aluminum and plywood

No one wants to pay gold prices to do big data computing

Don’t want to pay for compute speed & interconnect

Do want to pay for storage capacity and I/O capability

Additional issues:

run where data is produced & stored (local vs center)
data accessibility (add, delete, backup)

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

1M atoms, 100M snapshots ⇒ 3 Pbytes

Stats on where each atom traveled

near-approach to docking site
membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
1 map: read snapshot, emit key = ID; value = (time, xyz)
2 communicate: aggregate all values with same ID
3 reduce: order the values, perform analysis

Key point: extremely parallel comp + MPI All2all comm

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

1M atoms, 100M snapshots ⇒ 3 Pbytes

Stats on where each atom traveled

near-approach to docking site
membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
1 map: read snapshot, emit key = ID; value = (time, xyz)
2 communicate: aggregate all values with same ID
3 reduce: order the values, perform analysis

Key point: extremely parallel comp + MPI All2all comm

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

1M atoms, 100M snapshots ⇒ 3 Pbytes

Stats on where each atom traveled

near-approach to docking site
membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
1 map: read snapshot, emit key = ID; value = (time, xyz)
2 communicate: aggregate all values with same ID
3 reduce: order the values, perform analysis

Key point: extremely parallel comp + MPI All2all comm

Why is MapReduce attractive?

Plus:

write only the code that only you can write
write zero parallel code (no parallel debugging)
out-of-core for free

Plus/minus (features!):

ignore data locality
load balance thru random distribution

key hashing = slow global address space

maximize communication (all2all)

Minus:

have to re-cast your algorithm as a MapReduce

Matches big data programming model:
minimal human effort, not maximal performance

Why is MapReduce attractive?

Plus:

write only the code that only you can write
write zero parallel code (no parallel debugging)
out-of-core for free

Plus/minus (features!):

ignore data locality
load balance thru random distribution

key hashing = slow global address space

maximize communication (all2all)

Minus:

have to re-cast your algorithm as a MapReduce

Matches big data programming model:
minimal human effort, not maximal performance

MapReduce software

Hadoop:

HDFS, fault tolerance
extra big-data goodies (BigTable, etc)
no one runs it on gold-plated platforms

MR-MPI: http://mapreduce.sandia.gov
MapReduce on top of MPI
Lightweight, portable, C++ library with C API
Out-of-core on big iron if each proc can write scratch files
No HDFS (parallel file system with data redundancy)
No fault-tolerance (blame it on MPI)

MapReduce software

Hadoop:

HDFS, fault tolerance
extra big-data goodies (BigTable, etc)
no one runs it on gold-plated platforms

MR-MPI: http://mapreduce.sandia.gov
MapReduce on top of MPI
Lightweight, portable, C++ library with C API
Out-of-core on big iron if each proc can write scratch files
No HDFS (parallel file system with data redundancy)
No fault-tolerance (blame it on MPI)

What could you do with MapReduce at Petascale?

Post-simulation analysis of big data output

Graph algorithms:

vertex ranking via PageRank (460)
connected components (250)
triangle enumeration (260)
single-source shortest path (240)
sub-graph isomorphism (430)

Matrix operations:

matrix-vector multiply (PageRank kernel)
tall-skinny QR (D Gleich, P Constantine)

simulation data ⇒ cheaper surrogate model
500M x 100 dense matrix ⇒ 30 min on 256 plywood cores

Machine learning: classification, clustering, ...

Win the TeraSort benchmark

What could you do with MapReduce at Petascale?

Post-simulation analysis of big data output

Graph algorithms:

vertex ranking via PageRank (460)
connected components (250)
triangle enumeration (260)
single-source shortest path (240)
sub-graph isomorphism (430)

Matrix operations:

matrix-vector multiply (PageRank kernel)
tall-skinny QR (D Gleich, P Constantine)

simulation data ⇒ cheaper surrogate model
500M x 100 dense matrix ⇒ 30 min on 256 plywood cores

Machine learning: classification, clustering, ...

Win the TeraSort benchmark

No free lunch: PageRank (matvec) performance

Cray XT3 (gold), 1/4 billion edge highly sparse, irregular matrix

MapReduce communicates matrix elements

But recall: load-balance, out-of-core for free

Sub-graph isomorphism for data mining

Data mining, needle-in-haystack anomaly search

Huge graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

F 0 0 0 0 0 2 5 3

L

Example: 18 Tbytes ⇒ 107 B edges ⇒ 573 K matches
in 55 minutes on 256 plywood cores

Sub-graph isomorphism for data mining

Data mining, needle-in-haystack anomaly search

Huge graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

F 0 0 0 0 0 2 5 3

L

Example: 18 Tbytes ⇒ 107 B edges ⇒ 573 K matches
in 55 minutes on 256 plywood cores

Sub-graph isomorphism for data mining

Data mining, needle-in-haystack anomaly search

Huge graph with colored vertices, edges (labels)

SGI = find all occurrences of small target graph

F 0 0 0 0 0 2 5 3

L

Example: 18 Tbytes ⇒ 107 B edges ⇒ 573 K matches
in 55 minutes on 256 plywood cores

Streaming data

Continuous, real-time I/O

Stream = small datums at high rate

Resource-constrained processing:

only see datums once
compute/datum < stream rate
only store state that fits in memory
age/expire data

Pipeline model is attractive:

datums flow thru compute kernels
hook kernels together to perform
analysis
split stream to enable shared or
distributed-memory parallelism

Streaming software

IBM InfoSphere (commercial)

Twitter Storm (open-source)

PHISH: http://www.sandia.gov/∼sjplimp/phish.html
Parallel Harness for Informatic Stream Hashing
phish swim in a stream
runs on top of MPI or sockets (zeroMQ)

Key point: zillions of small messages flowing thru processes

Streaming software

IBM InfoSphere (commercial)

Twitter Storm (open-source)

PHISH: http://www.sandia.gov/∼sjplimp/phish.html
Parallel Harness for Informatic Stream Hashing
phish swim in a stream
runs on top of MPI or sockets (zeroMQ)

Key point: zillions of small messages flowing thru processes

PHISH net for real-time simulation data analysis

Gold vs aluminum vs plywood:
Most streaming is high data rate, low computation
Mismatch: continuous streaming versus batch jobs
Could couple to simulation for “steering”

simulation
running

Analyze

Analyze

Analyze

Analyze

....

Reduce

Scatter

Scatter

Scatter

Scatter

....

Map

Trigger

Stats

snapshots IDs

Big Iron and Big Data: An Unnatural Alliance?

Samuel Johnson (1709-1784):

Using big iron + MPI for big data ...
is like a dog walking on his hind legs.
It is not done well; but you are surprised to
find it done at all.

Unnatural MPI:

ignoring data locality

all2all (MapReduce)

tiny messages (streaming)

lots of I/O

Big Iron and Big Data: An Unnatural Alliance?

Samuel Johnson (1709-1784):

Using big iron + MPI for big data ...
is like a dog walking on his hind legs.
It is not done well; but you are surprised to
find it done at all.

Unnatural MPI:

ignoring data locality

all2all (MapReduce)

tiny messages (streaming)

lots of I/O

If you want that dog to walk at Petascale ...

Data analytics for informatics problems (e.g. MapReduce):

fast all2all for data movement (bisection bandwidth)

fast I/O rate to parallel disks for out-of-core

Streaming algorithms for informatics problems:

high throughput (zillions of small messages)

also low latency

Both need:

fast I/O (bandwidth + IOPs), ideally a disk per node

hi-speed access to external world (source of data)

Caveat: have ignored fault tolerance

Hadoop and Twitter Storm have it

MPI does not

If you want that dog to walk at Petascale ...

Data analytics for informatics problems (e.g. MapReduce):

fast all2all for data movement (bisection bandwidth)

fast I/O rate to parallel disks for out-of-core

Streaming algorithms for informatics problems:

high throughput (zillions of small messages)

also low latency

Both need:

fast I/O (bandwidth + IOPs), ideally a disk per node

hi-speed access to external world (source of data)

Caveat: have ignored fault tolerance

Hadoop and Twitter Storm have it

MPI does not

Thanks & links

Sandia collaborators:

Karen Devine (MR-MPI)

Tim Shead (PHISH)

Todd Plantenga, Jon Berry, Cindy Phillips (graph algorithms)

Open-source packages (BSD license):

http://mapreduce.sandia.gov (MapReduce-MPI)

http://www.sandia.gov/∼sjplimp/phish.html (PHISH)

Papers:

Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).

Plantenga, “Inexact subgraph isomorphism in MapReduce”,
submitted to JPDC (2011).

Plimpton & Shead, “PHISH tales”, in progress (2012).

