Big Iron for Big Data: An Unnatural Alliance?

Steve Plimpton
Sandia National Labs

Salishan Conference on High-Speed Computing
April 2012

Sandia Sandia National Laboratories is a mti- program laboratory managed and operated by Sandia PN AT =)
National a wholly owned of Lockheed Martin Corporation, for the U.S. Department of v A D‘-‘
Laboratories Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. s

Big data analytics (BD) versus scientific simulations (SS)

@ Programming model:
e SS: polish same code for years, tune its performance
e BD: quick & dirty or agile, morph tools for data
e BD: less emphasis on performance, more on programmer effort

Big data analytics (BD) versus scientific simulations (SS)

@ Programming model:

e SS: polish same code for years, tune its performance

e BD: quick & dirty or agile, morph tools for data

e BD: less emphasis on performance, more on programmer effort
o Computational load:

e SS: computation heavy (not memory or 1/O bound), in-core
e BD: computation light (often 1/0 bound), often out-of-core

Big data analytics (BD) versus scientific simulations (SS)

@ Programming model:

e SS: polish same code for years, tune its performance

e BD: quick & dirty or agile, morph tools for data

e BD: less emphasis on performance, more on programmer effort
o Computational load:

e SS: computation heavy (not memory or 1/O bound), in-core

e BD: computation light (often 1/0 bound), often out-of-core
o Computational structure:

e SS: either structured or lots of effort to load-balance

o BD: often dramatically unstructured (power-law graphs)

e BD: less emphasis on enforcing/exploiting data locality

Big data analytics (BD) versus scientific simulations (SS)

@ Programming model:
e SS: polish same code for years, tune its performance
e BD: quick & dirty or agile, morph tools for data
e BD: less emphasis on performance, more on programmer effort
o Computational load:
e SS: computation heavy (not memory or 1/O bound), in-core
e BD: computation light (often 1/0 bound), often out-of-core
o Computational structure:
e SS: either structured or lots of effort to load-balance
o BD: often dramatically unstructured (power-law graphs)
e BD: less emphasis on enforcing/exploiting data locality
Data usage & ownership:
SS: big data is an output, not an input
BD: big data is an input, maybe an output
BD: data may be sensitive or proprietary
BD: compute where data is, “own” the data

|/O needs for big data computing

Olympic metric for price: gold, silver, bronze

|/O needs for big data computing

Olympic metric for price: gold, silver, bronze

Gold-plated solution:

top-10 machine (petascale, ORNL Jaguar)
$100M, 224K cores

custom Spider parallel file system (Lustre)

o not NFS, tuned for big-chunk read/writes
o 10 Pbytes, 13K disks
e 240 GB/sec, IOPs = ~1M

data itself not valuable (regenerate by simulation)

code & CPU time to create it is valuable

|/O needs for big data computing

Olympic metric for price: gold, aluminum, bronze

Aluminum-plated solution:

top-500 machine (bioinformatics cluster at Columbia U)

$2.5M, 4000 cores using data 24/7
clustered commercial NAS (Isilon, Panasas, ...)

o NFS, scalable capacity, 1B small files
e 1 Pbyte, 1000 disks
o 20 Gb/sec, 500K 10Ps

data generated externally (> Moore's and Kryder's laws)

data is highly valuable, must be easy to manage/backup

|/O needs for big data computing

Olympic metric for price: gold, aluminum, plywood

Plywood-plated solution:

@ Google, Facebook, Twitter = racks of cheap cores and disks
e minimal $$, could not care less about top-500 and LINPACK
e 1+ disk/core:

e scalable capacity
o 100 Pbytes, 100K disks (made this up)
e 10 TB/sec, 20M IOPs

@ my summer vacation photos may be valuable

e much of data is not valuable (continually refreshed)

Bottom line

’ Medal: H $/PByte ‘ TB/core ‘ PB/Pflop ‘ IOPs/PB ‘
Gold: $10M 0.044 5 ~100K
Aluminum: | $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ~200K

Bottom line

’ Medal: H $/PByte ‘ TB/core ‘ PB/Pflop ‘ IOPs/PB ‘
Gold: $10M 0.044 5 ~100K
Aluminum: | $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ~200K

Big data computing done on aluminum and plywood

No one wants to pay gold prices to do big data computing

Don't want to pay for compute speed & interconnect

Do want to pay for storage capacity and |/O capability

Bottom line

’ Medal: H $/PByte ‘ TB/core ‘ PB/Pflop ‘ IOPs/PB ‘
Gold: $10M 0.044 5 ~100K
Aluminum: | $2.5M 0.25 40 500K
Plywood: $0.3M 1+ 100+ ~200K

Big data computing done on aluminum and plywood

No one wants to pay gold prices to do big data computing

Don't want to pay for compute speed & interconnect

Do want to pay for storage capacity and |/O capability
Additional issues:

o run where data is produced & stored (local vs center)
o data accessibility (add, delete, backup)

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

@ 1M atoms, 100M snapshots = 3 Pbytes
@ Stats on where each atom traveled

e near-approach to docking site
e membrane crossings

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

@ 1M atoms, 100M snapshots = 3 Pbytes
@ Stats on where each atom traveled

e near-approach to docking site
e membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
@ map: read snapshot, emit key = ID; value = (time, xyz)
@ communicate: aggregate all values with same ID
© reduce: order the values, perform analysis

MapReduce for scientific data

Tiankai Tu, et al (DE Shaw), Scalable Parallel Framework for
Analyzing Terascale MD Trajectories, SC 2008.

@ 1M atoms, 100M snapshots = 3 Pbytes
@ Stats on where each atom traveled

e near-approach to docking site
e membrane crossings

Data is stored exactly wrong for this analysis

MapReduce solution:
@ map: read snapshot, emit key = ID; value = (time, xyz)
@ communicate: aggregate all values with same ID
© reduce: order the values, perform analysis

o Key point: extremely parallel comp + MPI_All2all comm

Why is MapReduce attractive?

o Plus:
e write only the code that only you can write
o write zero parallel code (no parallel debugging)
e out-of-core for free

@ Plus/minus (features!):

@ ignore data locality
e load balance thru random distribution

@ key hashing = slow global address space
e maximize communication (all2all)
o Minus:
e have to re-cast your algorithm as a MapReduce

Why is MapReduce attractive?

o Plus:
e write only the code that only you can write
o write zero parallel code (no parallel debugging)
e out-of-core for free

@ Plus/minus (features!):

@ ignore data locality
e load balance thru random distribution

@ key hashing = slow global address space
e maximize communication (all2all)
o Minus:
e have to re-cast your algorithm as a MapReduce

Matches big data programming model:
minimal human effort, not maximal performance

MapReduce software

ClERREEw

@ Hadoop:
o HDFS, fault tolerance
e extra big-data goodies (BigTable, etc)
@ no one runs it on gold-plated platforms

MapReduce software

ClERREEw

@ Hadoop:
o HDFS, fault tolerance
e extra big-data goodies (BigTable, etc)
@ no one runs it on gold-plated platforms

e MR-MPI: http://mapreduce.sandia.gov
e MapReduce on top of MPI
o Lightweight, portable, C++ library with C API
e Out-of-core on big iron if each proc can write scratch files
o No HDFS (parallel file system with data redundancy)
o No fault-tolerance (blame it on MPI)

What could you do with MapReduce at Petascale?

@ Post-simulation analysis of big data output
o Graph algorithms:

e vertex ranking via PageRank (460)
connected components (250)
triangle enumeration (260)
single-source shortest path (240)
sub-graph isomorphism (430)

What could you do with MapReduce at Petascale?

@ Post-simulation analysis of big data output
o Graph algorithms:
o vertex ranking via PageRank (460)
o connected components (250)
o triangle enumeration (260)
e single-source shortest path (240)
o sub-graph isomorphism (430)
@ Matrix operations:
o matrix-vector multiply (PageRank kernel)
o tall-skinny QR (D Gleich, P Constantine)
@ simulation data = cheaper surrogate model
@ 500M x 100 dense matrix = 30 min on 256 plywood cores
@ Machine learning: classification, clustering, ...
@ Win the TeraSort benchmark

No free lunch: PageRank (matvec) performance

Cray XT3 (gold), 1/4 billion edge highly sparse, irregular matrix

10 100
__10' 110
1]
o
Q
K2
£ 10° 1
=
o}
o
o -1

10 70.1

—@— MapReduce
o| —®—Trilinos
10° ——0.01
4 16 64 256 1024 ’
Processors

@ MapReduce communicates matrix elements
@ But recall: load-balance, out-of-core for free

Sub-graph isomorphism for data mining

o Data mining, needle-in-haystack anomaly search
@ Huge graph with colored vertices, edges (labels)
o SGI = find all occurrences of small target graph

Sub-graph isomorphism for data mining

o Data mining, needle-in-haystack anomaly search
@ Huge graph with colored vertices, edges (labels)
o SGI = find all occurrences of small target graph

—>

"/T

Sub-graph isomorphism for data mining

o Data mining, needle-in-haystack anomaly search
@ Huge graph with colored vertices, edges (labels)
o SGI = find all occurrences of small target graph

/—>
-7
S
L —H—E—N N—H—N—5
Flo 0 0 o0 o0 2 5 3

Example: 18 Tbytes = 107 B edges = 573 K matches
in 55 minutes on 256 plywood cores

Streaming data

Continuous, real-time I/O

Stream = small datums at high rate
@ Resource-constrained processing:

e only see datums once

e compute/datum < stream rate

e only store state that fits in memory
o age/expire data

Pipeline model is attractive:

e datums flow thru compute kernels

o hook kernels together to perform
analysis

@ split stream to enable shared or
distributed-memory parallelism

Streaming software

e IBM InfoSphere (commercial)

e Twitter Storm (open-source)

@ PHISH: http://www.sandia.gov/~sjplimp/phish.html
o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream
e runs on top of MPI or sockets (zeroMQ)

Streaming software

e IBM InfoSphere (commercial)

e Twitter Storm (open-source)

@ PHISH: http://www.sandia.gov/~sjplimp/phish.html
o Parallel Harness for Informatic Stream Hashing
@ phish swim in a stream
e runs on top of MPI or sockets (zeroMQ)

@ Key point: zillions of small messages flowing thru processes

PHISH net for real-time simulation data analysis

@ Gold vs aluminum vs plywood:
e Most streaming is high data rate, low computation
e Mismatch: continuous streaming versus batch jobs
e Could couple to simulation for “steering”

Map Reduce
snapshots IDs
. o
N N
sz:1nur;;':i§<l>n - — i
\> annw F—
o -

Trigger

Big Iron and Big Data: An Unnatural Alliance?

Samuel Johnson (1709-1784):

Using big iron 4+ MPI for big data ...
is like a dog walking on his hind legs.
It is not done well; but you are surprised to =~ ===
find it done at all.

Big Iron and Big Data: An Unnatural Alliance?

Samuel Johnson (1709-1784):

Using big iron + MPI for big data ...
is like a dog walking on his hind legs.
It is not done well; but you are surprised to =~ ===
find it done at all.

Unnatural MPI:
@ ignoring data locality
e all2all (MapReduce)

@ tiny messages (streaming)
@ lots of I/O

If you want that dog to walk at Petascale ...

Data analytics for informatics problems (e.g. MapReduce):

o fast all2all for data movement (bisection bandwidth)

e fast 1/O rate to parallel disks for out-of-core

Streaming algorithms for informatics problems:
@ high throughput (zillions of small messages)
@ also low latency

Both need:

e fast /O (bandwidth + IOPs), ideally a disk per node
@ hi-speed access to external world (source of data)

If you want that dog to walk at Petascale ...

Data analytics for informatics problems (e.g. MapReduce):

o fast all2all for data movement (bisection bandwidth)

e fast 1/O rate to parallel disks for out-of-core
Streaming algorithms for informatics problems:

@ high throughput (zillions of small messages)

@ also low latency
Both need:

e fast /O (bandwidth + IOPs), ideally a disk per node
@ hi-speed access to external world (source of data)

Caveat: have ignored fault tolerance

@ Hadoop and Twitter Storm have it
e MPI does not

Thanks & links

Sandia collaborators:

e Karen Devine (MR-MPI)

e Tim Shead (PHISH)

e Todd Plantenga, Jon Berry, Cindy Phillips (graph algorithms)
Open-source packages (BSD license):

@ http://mapreduce.sandia.gov (MapReduce-MPI)

e http://www.sandia.gov/~sjplimp/phish.html (PHISH)
Papers:

@ Plimpton & Devine, “MapReduce in MPI for large-scale graph
algorithms”, Parallel Computing, 37, 610 (2011).

e Plantenga, “Inexact subgraph isomorphism in MapReduce”,
submitted to JPDC (2011).

e Plimpton & Shead, “PHISH tales”, in progress (2012).

