Steering the Ship in the Face of a Tidal
Wave: Co-design Strategy at LLNL

Salishan Conference on High Speed Computing
April 25, 2012

Rob Neely

B Lawrence Livermore
National Laboratory

LLNL-PRES-551777

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Salishan Conference themes

-~ 4
kﬁ__ o Ch
)
» 0}
L‘ Applications »A

= Conference theme: how to more effectively use current or
emerging advanced architectures.

= Session theme: Application/Machine hierarchy
- What is our experience dealing with many levels of memory?

- What have we learned about memory hierarchy that will

enable effective use of 3D DRAM and on-node NVRAM in this
timeframe?

- What experiences do we have with “new” programming
models ?

- What is the effectiveness of current languages versus new
languages?

Lawrence Livermore National Laboratory LLNL-PRES-551777 b

Big Ships, Rough Seas, and Unseen Hazards

Big Codes

Lawrence Livermore National Laboratory LLNL-PRES-551777 ‘&

We’re facing an enormous challenge of how to move our
multi-physics apps to exascale machines.

Often > 10 physics packages
10 to ~30 third party libraries
Long life-time projects with >1 million lines of code

15+ years of development by large teams (10 — 20+ FTEs)

Many different spatial, temporal scales
Variety of parallelism approaches
Steerable / interactive interfaces
Multi-language (C++, C, Fortran90, Python)
End users are typically not developers (no ability to just fix and recompile)

All have adapted excellent SQA processes for major evolutionary restructuring

Algorithms tuned for minimal turn-around time instead of maximal
computational efficiency

We must continue to deliver our programmatic mission while addressing

the needs of next generation advanced architectures.

Lawrence Livermore National Laboratory LLNL-PRES-551777 ‘&

Exascale computing presents unique challenges to

multi-physics integrated codes

Improved
Physics
Laser beam effects

Plasma blow-off
and effect on
drive, symmetry

Improved

Capsule implosion

details time/)
Explosion Ime/space

symmetry
Atomic physics
Line radiation
transport

Improved Understanding
(predictive capability)

Resolution
(multi-scale,

HEDP Example

P’ Laser-Plasma
~__Interaction (LPI)

Non-LTE plasma |
blow-off y

3D capsule
implosion &
explosion

1 .
B R 38 =2
y ¢ S TN
& i R
g 1
b/ o |
A S
3N ™
p 1 S W
et B a
b s | 2V
b
&

mﬂ\\i

frso ov

In-situ
diagnostic
modeling

3D capsule
drive

ggggggggggggg

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory

‘l

SOS16, Santa Barbara CA, March 13-15 2012

Our physics packages have differing computational

requirements, making generalizations difficult

« Below are examples of some common physics packages
» Typical characteristics of each package are listed, with those
that typically limit performance listed in red

Typical

Hydrodynamics

Deterministic

Monte Carlo

Diffusion

Characteristics

Memory needs

0.1 -1 KB/zone

Transport
40 - 240 KB/zone

Transport
3 - 30 KB/zone

0.1 - 1 KB/zone

Memory access
pattern

Regular with
modest spatial and
temporal locality

Regular, low
spatial but high
temporal locality

Irregular, low
spatial and
temporal locality

Regular, good
spatial and
temporal locality

Communication
pattern

Point to point,
surface
communication

Point to point,
some volume

Point to point,
some volume

Collective
communications

and point to point

Mflops per zone 0.02-0.1 (10X for | 2—-12 .03 -.07 0.1-3

per cycle iterative schemes)

Databases 20-160 MB (EOS) | 0.3-12 MB 100 - 300 MB 0.1 - 1 KB/zone
(Nuclear) (Nuclear)

Lawrence Livermore National Laboratory

6
LLNL-PRES-551777 LL

Evolve or Rewrite? This is a fundamental
question we’re addressing

OpenMp e
CUDA.

Evolve existing code bases Undertake new
« Gain experience with massive scratch”
scaling (Sequoia / BlueGeneQ)
* Implement fine-grained threading
* Application-controlled resilience
 GPU directives
» Leverage validated code base

« Evaluate and gain exp
new programming mo

« Develop proxy applica
streamline exploration

* Determine degree of r
needed (if any)

It’s too early to choose a technology to rewrite our applications
HOWEVER

It’'s never too early to explore and influence promising technologies

Lawrence Livermore National Laboratory LLNL-PRES-551777 &

(One of) the difficulties of co-design

Co-design gets more difficult the further you get from open
collaboration and the closer you get to the “truth”

@)

Open Co-design

. . Released Proxy
National Unclassified, Apps
Security but not open Standard [Deep NDA]
Applications applications Open vendor NDA

k information /

* ASC : Involve staff with clearances in co-design efforts

* Vendor : Firewalling of lab staff from engaging in multiple “deep
NDA” involvements

Lawrence Livermore National Laboratory LLNL-PRES-551777 ‘&

Proxy apps development is being pursued
strategically along two axes

Proxy apps represent a
powerful and holistic training
tool to give our own developers
a head start on technology
exploration and software
architecture and design

Simple, open, and
easy to pick up and
explore

Must accurately
represent original
applications

The collection
should account for
more than just fast
numerical
performance

Proxy apps are more than just a benchmark, they are a dynamic and living
representation of the current state of how typical applications are written

Lawrence Livermore National Laboratory LLNL-PRES-551777 &

Proxy app explorations must tie back to the
full applications they are representing

Sub select
test suite

Apply metrics to full
code - identify “hot | I

O

Develop proxy

spots” app
hat
What candidate x-
lessons Repeat formations?
learned? as
' needed
Apply
lessons From candidates - id‘gntify
learned to full | | transformations to improve
code proxy-app metrics

When does this approach “converge”?
Lawrence Livermore National Laboratory nieresasirr B

Co-design

LULESH and Mulard are two new proxy
apps developed in the past year

LULESH: Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics

» Representative of data structures and numerics of a major
ASC application

» Performs a Sedov (blast wave) calculation

» 3D unstructured hex mesh
« 8 different versions (and counting)

Mulard: multigroup radiation diffusion

* 10-100 coupled diffusion equations transport radiation
* Many, large scale linear solves

 Lots of data, complicated setup

« Each group matrix has similar structures

« Can assemble all groups at once

» Can solve groups independently or together

Lawrence Livermore National Laboratory R eee—— (52

Current proposed set of LLNL Proxy Apps

Name _ |Descripon | Language Type
Unstructured Mesh Transpor

AMG (hypre) | Algebraic Multigrid | C,MPLOMP | Mini |
CLOMP OpenMP, TM/SE performance & overheads m

Monte Carlo transport C++ MPI, OMP Skeleton
Lulesh Explicit Lagrange shock hydro on unstructured mesh C++, MPI, OMP Mini
f3d kernels Single precision vectorization, complex arithmetic C, OMP, (yorick) Mini
Mulard* High order diffusion (MFEM based) C++, MPI Compact
LIP Livermore Interpolation Package (used by LEOS) C Mini
Blast* High order hydrodynamics (MFEM based) C++, MPI Compact
HEART Vectorization C, OMP Kernel
EOS_fm4 Gruneisen analytic equation of state Cc Kernel
MIAVAS Array-of-structs vs struct-of-arrays C Kernel
AdvB Advection C++, MPI Mini
ioperf HDF5 LLNL benchmark Cc Skeleton
Steer OS support for code steering Py, Mini
LLNLLoops 2 SIMD vectorization Cc Kernel
AMR Adaptive Mesh Refinement ? Compact
Contact Slide surfaces, contact (LDEC-based?) ? Mini
Mslib* Element by element material models C Compact

Sequoia Exists / Exists / Under Undeveloped
Benchmark released unreleased development - .
May be restricted

Lawrence Livermore National Laboratory LLNL-PRES-551777 b

Advanced Architectures Software
Development (AASD) Project

= Launched in Sept 2011 to coordinate activities in multiphysics
integrated code teams aimed at next gen architecture app
development

= Provide developers much-needed “free energy” to explore new
technologies

AASD = Work with research and vendor
e N\ community to identify promising
e and applicable technologies

ExaCT
\]

= Inform programmatic funding of
l key technologies before they end

due to lack of research funding

CASC/
ISCR

———— .

LN &
ey

Lawrence Livermore National Laboratory LLNL-PRES-551777 “

Experience on existing platforms is giving us insight
into scalability for upcoming petascale architectures

= Existing petascale platforms at LLNL:
- Dawn (BlueGene/P) — 147k cores (.5 Pf)
« Zin (Linux TLCC2) — 45k cores (.97 Pf)

= O(P) data structures quickly rear their heads

= Threading is a requirement for performance on Sequoia (BG/Q)
for best performance

= SCR (Scalable Checkpoint-Restart) intercepts file I/0 to main
memory, and is in direct response to:

 Increased file 1/0 times
« Resilience issues at scale

Lawrence Livermore National Laboratory LLNL-PRES-551777 “b

We’re dusting off our OpenMP books (and
learning some new tricks, too)

= Too little work relative to the Overhead
- Make sure time saved with parallelism exceeds overhead spent

= Shared Memory: Ensure all have latest data values (flushed)

= Data Race Conditions — Tricky & random, use tools to find!
- Multiple threads updating data simultaneously

= Private variables, critical sections, & other restrictions
- Unnecessary or excessive restrictions slows threads down

= Thread Scheduling / Chunking / Affinity (Multi-Socket)
« Where will related thread run? Near data? Cache preload?

= Amdahl’s Law still applies! Don’t sequentialize unnecessarily
- Time dominated by sequential sections as parallelism scaled up

= Plus, Transactional Memory (via compiler directives) is available
on BlueGene/Q- early results are encouraging

Lawrence Livermore National Laboratory LLNL-PRES-551777 *

Sequential work loops are common in parallel
applications

1
for every owned zone { —

for every material

{ EErrrrrL
}
}
2 E—)
for every owned zone {
for every material LLLLLLLLL
{
}
: 3
for every owned zone { —
for every material SORRREEREE
{
} time
} —

. . 16
Lawrence Livermore National Laboratory LLNL-PRES-551777 (52

We’re exploring the use of the TBB pipeline construct
to expose more parallelism (at the cost of additional
complexity)

(for every owned zone {\ for every owned zone { Gor every owned zone {\
for every material for every material for every material

{ {

} }

(&, J

Once a segment of work from
one loop is completed, its

output becomes available as L

input to the next loop.

The syntax is a bit “disruptive”

time

—

Lawrence Livermore National Laboratory LLNL-PRES-551777 "

Index Sets are a common data structure for
managing subsets

An index set defines a
traversal over a subset of
items in an ordered collection.

for (int i = 0 ; i < len ; ++i) {

// expression with
// “data[index[i] 1”

}

Indirection makes SIMD ZM — { 0-20 : 24 : 32 : 40 }

vectorization difficult or
impossible (without gather/
scatter)

18UL_

Lawrence Livermore National Laboratory LLNL-PRES-551777

Index Set types and tradeoffs

Recall Z,, = {0—20, 24,32, 40}

= Structured Range
« Consists of contiguous range (or IJK), possibly with stride

- High performance,

but limited iteration patterns

« Traversal can vectorize well at compile time

= Unstructured List
« Consists of a set of arbitrary index values

- Lower performance,

but very flexible iteration patterns

« Not directly vectorizable, streams more data through cache

= Hybrid

« Binds structured & unstructured sets in a single traversal construct

« Can yield best of both types, but normally requires add’| compiler
support, source-to-source translation, or manual loop splitting

Lawrence Livermore National Laboratory

19UL_

LLNL-PRES-551777

Using hybrid “range” abstractions allows for
multiple versions of the same loop

for (int i = begin ; i < end ; ++i) {

// expression with “data[i]” Structured

for (int i = 0 ; i < len ; ++i) {

Unstructured

// expression with “data[index[i] 1”

}

+ Allows detailed optimizations within each loop
— Hybrid traversal requires multiple loops & loop bodies

— Modification & specialization for platform-specific
traversals requires changing loops throughout code

Lawrence Livermore National Laboratory LLNL-PRES-551777 &

Moving beyond the software pipeline provides a
mechanism for exploiting additional concurrency

= Current codes process physics packages in a mostly serial
fashion
= Future architecture challenge:

- Can physics packages be run simultaneously on different
sets of processors?

- What are the communication and accuracy constraints?

Package A and B run simultaneously on different sets of processors and
feed results to package C

Lawrence Livermore National Laboratory L

LLNL-PRES-551777

We are studying the effects of persistent memory
characteristics on our algorithms

Disk Persistent Memory
Random access is bad Random access is good
Reading and writing good Reading is better than writing
Concurrent requests are bad Concurrent requests are good
Binary Search
180
100000 1 " 6 N ite,
64M random 8 byte 10s 160 Intel SLC SSD
90000 / g —&— Fusion-io
80000 / o 140 T - 4= Host RAM Disk
- =
570000 // 128 Threads g 120 o
£ g 100
§SOODO ~#-32 Threads 2
:‘:.’_40000 / — % 80 |
@ ~#—16 Threads t;
gaoooo /l(/' U L g0 |
20000 //4‘/‘ %
e o Treads § 40 |
[
10000 gttt 32
20
0
50 60 70 80 90 100 0
Percentage of Read Ops
1 2 4 8
Courtesy: Maya Gokhale Number of Threads
There is a factor of 9x increase in number Interconnect bandwidth impacts application
of 1/Os per second for read-only access run time by 2-3x

Co

/‘
. . . . tation
t’ Lawrence Livermore National Laboratory Emerging Technologies 03/12 * \gugh 22

Persistent variables are synchronized to persistent
memory during a low latency checkpoint

template<class T>
struct PersistentType

{

typedef std::vector<T,PERM_NS::allocator<T> >
vector;

b

PERM struct Domain { ...
PersistentType<Real_t>::vector m_x; [* coordinates */
PersistentType<Real t>::vector m_y;

PersistentType<Real_t>::vectorm_z;

.}

while(domain.time() < domain.stoptime()) {
if(ready_to_write){
backup(); /* Persistent memory library call */
ready_to_write = false;
}
Timelncrement() ;
LagrangeLeapFrog() ;
if (domain.cycle() >= checkpoint_iter) break;

}

= The programmer designates certain variables as permanent
= These variables are allocated into the persistent memory and used normally in

the program

= Checkpoints, at program points specified by programmer, copy the persistent

memory region to a file

= Restart initializes persistent variables from the file

@ Lawrence Livermore National Laboratory

Emerging Technologies 03/12

23

One approach to checkpointing targets future
exascale architectures

Today: Explicit copying, global files Exascale: Implicit copy, local files

* Checkpoint files are created ina e The checkpoint file format is
common format that a library application specific.
Mmanages. » The application does not need to do

* The application copies program explicit copy of individual variables.

variables to the checkpoint file e The checkpoint file is written to

using library calls. local persistent memory.
* The checkpoint file is written to a
global storage area network.
[CremtigSatem]
B
o]

Convpute e | | Comgptte Nade | | Compate Male e
134 Dual Socket Quad Core Compute Nodes (1,072 cores)| [st I | [soiiace | ~—
[
12x24 = 288 Port (144D 144U) InfiniBand 4x DDR

144 Port IBA 4x t 1Res 4SHMUM*SC G low| ow [ew| [ow jew| ow| jew| ¢ CHpsEee
Uplinks to r 201 GHE R gelivered IO over | delivered|/0 over
spine switch RAID 2x10GbE 1xIBA 4x
1GbE Management \ Ay DOR AN
IBA 4x DDR SAN
LR I AN l |
"NIF MD -/ MD
s

S

Today’s clusters separate storage from compute At exascale storage is in the compute cluster

t Lawrence Livermore National Laboratory Emerging Technologies 03/12

There are many research efforts ongoing under

ExaCT

= Algebraic Multigrid (AMG) Solvers
« Scalability, Performance Modeling

= Resilience
 Scalable Checkpoint-Restart (SCR) g
« Algorithmic Fault Tolerance 4

= Load Balance Analysis
 Evaluating the Effectiveness of Load Balance Algorithms

= Multicore
« Memory Sharing with SBLLMalloc

= Debugging =

rotated anisotropy, 0.01, 60°, 500x500 per
proc, uBGL

10 *old

0 20000 40000 60000
no. of procs

« Stack Trace Analysis Tool (STAT) Analysis

 AutomaDeD & CAPEK Tool

@ Lawrence Livermore National Laboratory

Goal of Survey to Characterize Novel Programming
Models that might have Applicability for Exascale

Characterization includes:

« The easeinlearningand —)p L
adopting these languages. E | CURVEY OF NOVEL

» The specific benefits to Pon oARMLELING
switching to the new

APPLICATIONS AT EXASCALE
language paradigm. RN
= The robustness of the
model.

= The potential of this model
to meet programming
needs in the future, —)
regardless of its present
state.

Rich Cook, Evi Dube, lan Lee, Lee Nau,
Charles Shereda, and Felix Wang

November 17, 2011

w Lawrence Livermore National Laboratory 26

We characterized 10 systems spanning
several data and control models

System (a) Programming Model (b) Data Model Control Model

Chapel Partitioned Global Address Global memory view Global view
Space (PGAS)

X10 Asynchronous PGAS Global memory view Global view

Fortress PGAS Global memory view Global view

Cilk Plus Multithreaded Global memory view (single Global view (single node)
node only)

Intel Parallel Building Blocks Multithreaded Global memory view (single Global view (single node)
node only)

UPC PGAS Global memory view Global view

Charm++ Object-oriented Local memory view ?

AMPI Message passing Local memory view Local view

OpenCL GPU language GPU memory view (datais Global view (single node)
transferred to and from GPU
memory)

CUDA GPU language GPU memory view (datais Global view (single node)
transferred to and from GPU
memory)

The Appendix mentions Titanium, Global Arrays, ParallelX and High Performance
ParallelX, writing Domain Specific Languages, and OpenMP Advancement

@ Lawrence Livermore National Laboratory 27

Metrics included flexibility, data compatibility, ease of use,

evolutionary shift to measure suitability to LLNL Apps

Pros to a language:

Data structures allow for
adaptive meshes and sparse
matrices

Programming ease and
elegance

Domains distributed across
locales of clustered system

Simplifies, enhances data
distribution

Code based on C++, Fortran,
Java so easy to learn

Cons to a language:

Dramatic change in
approach

Inability to exist as
secondary language

Not heavily tested as
scientific app code

Limited functionality

@ Lawrence Livermore National Laboratory

28

Excellent example of confluence of merging efforts
to propel LLNL forward to Advanced Archltectures

= [nitial Development of LULESH
Proxy App at Cray

April 2011

= Programming Model Survey

= [Invitation for Chapel lead to visit
LLNL
« Tutorial on Chapel basics
* General enthusiasm from app
developers

= LLNL gains basic familiarity, learns
from initial LULESH port

= Reciprocated visit to Seattle
« Block Coding -> Unstructured
Coding ~ 6 hours
« 25 extralines of code!

~
F
o
N
=
U
S
S
=

vvvvvvvvvv

w Lawrence Livermore National Laboratory

The message to our application developers
must be clear

= We cannot stand still

« Concurrency, memory restrictions, memory bandwidth,
vectorization, scaling, accelerators, resilience...

« Programming models abound: languages, run-time systems, power
and resilience management, ...

- Even commodity clusters will be “advanced architectures” in
coming years

= We can’t do this alone - collaboration is more important than ever
- Between code teams, internal lab efforts, labs, and NNSA and ASCR

= Despite the lack of well-funded post-petascale strategy, DOE is
making significant progress

- Three funded co-design centers
« ASCR funded projects (e.g. X-stack)
- FastForward RFP out

30LLL

Lawrence Livermore National Laboratory LLNL-PRES-551777

This is an Evolutionary Revolution

We are the 1% - and proud of it!

Lawrence Livermore National Laboratory LLNL-PRES-551777 il 2

B Lawrence Livermore
National Laboratory

