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Many worthy efforts are underway to address the 
challenges ahead for scientific simulation… 

  How do we build and run an exascale machine? 

  What chips will we run on? 

  What interconnect? 

  How will the OS stack change? 

  How will we think of data persistence? 

  What programming languages? APIs? models? 

  How do we evolve software? 

  ... and many more! 
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Social challenges are important, too 

  Who will program this system? 
•  Better yet, who will debug it? 

•  And how do we build this programmer? 

•  What about as we move away from the heart of HPC? 
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Learning about where we need to go as scientific 
simulation programmers 

  Rewriting, re-thinking Implicit Monte Carlo transport for 
Roadrunner 

  The advanced architecture tutorial project 

  SWIFT 

  Language as a means to develop developers 
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Implicit Monte Carlo simulates thermal X-ray transport 
for time-dependent, nonlinear problems 

  Fleck & Cummings time 
discretization 

  object-oriented, generic C++: 
•  templated on mesh type, 

freq type, particle type 

  transports particles 3D, 
meshes articulated in 1,2,3D 

  multigroup frequency 
treatment 

  supports AMR 

  two distributed parallel 
modes: mesh replicated, 
decomposed  

  Wedgehog: Fortran callable 
interface library 

 Milagro  Wedgehog 

 ClubIMC 

 draco 

 vendor libs 
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An app programmer’s view of Roadrunner hybrid node: 
one Opteron + one Cell 

 4 GB RAM  Opteron network, IO 

PPE  4 GB RAM 

 Cell   SPE 

 Element Interconnect Bus  

DACS 

  SPE   SPE   SPE 

  SPE   SPE   SPE   SPE 

SPE: “Synergistic 
Processing Element” 
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IMC on Roadrunner timeline, 2006-11 

  Summer, 2006: multiple efforts undertaken to port codes 
to possible Roadrunner architectures. 

  2006-7: Two efforts (Henning, Kelley) to port Implicit 
Monte Carlo transport to Roadrunner. 
•  Top-down: free reign with data structures, algorithms. 

•  Bottom-up: migrate from existing code base. 

•  Both approaches showed similar speedups after 8-9 months 
work; bottom-up approach chosen.  

  2008-9: Additional IMC physics ported, one major sync 
with trunk. Much help from IMC code team! (Urbatsch, 
Hungerford, Rockefeller) 

  2010-11: RR branch merged with trunk, IMC team takes 
control. 
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We were successful on the IMC/Roadrunner project. 

  Working, accelerated code 

  Changed the MC transport algorithm 
•  hierarchical concurrency 

•  model expressed as set of C++ classes 

•  model can be implemented for multiple machine architectures 

  Decoupled particle generation from particle transport 

  Introduced streams between particle generator, particle 
transporter, and particle disposer 
•  streams enable physical decoupling 

  See [1] for much more detail 
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We learned some interesting things. 

  Advanced architectures create project management problems  
•  the Roadrunner code was a major redesign & rewrite 

—  introduced/rewrote ~10 kloc++ 

•  code was forked for several years (now merged!) 

  Architecture-specific coding wasn’t the hard part   

  Code not properly vectorized (ongoing) 

  Tally strategy worked for ~10 threads (ongoing) 
•  …probably won’t scale to 100+ 

  Debugging was painful 
•  We found...gaps...between the machine and C 

IMC was one of many efforts. Detailed presentations at 

http://www.lanl.gov/roadrunner/rrseminars.shtml 
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Roadrunner is the foundation of our efforts to  
use advanced architectures 

  Formed Applied Computer Science Group (CCS-7) 
•  Unite application developers, computer scientists 

•  Build on Roadrunner experience to continue moving forward 

  Roadrunner technical seminar series (2008) [1] 

  Roadrunner programming classes (2008-10) 

  OpenCL programming classes (2011-2) 

  XCP-CCS advanced architectures tutorial project (2011-2) 

  The SWIFT project (2012->2015) 
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We tried a new idea: ‘the advanced architecture tutorial’ 

  First iteration, FY 11; second iteration, FY 12 

  Six participants from XCP & CCS divisions 

  Format:  
•  small (mini-app) code project. 

•  sustained involvement—1/4 time for one year 

  Goals:  
•  communicate ideas about abstraction; improve software 

engineering skills; learn to program advanced architectures. 

  Some lessons learned: 
•  C++ is hard to learn, harder to use well 

•  programming advanced architectures is not the hard part 

•  the hard part is developing the model of the computation 

  Rolled those lessons into the 2012 iteration (Lally) 
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SWIFT 

  New multiphysics code project (started 2012) 

  Goals: 
•  Develop more flexible approach to writing codes; 

•  Incorporate newer programming techniques; 

•  reduce time, cost to develop codes. 

  50-50 mix of Roadrunner veterans and physics experts 
•  including people from the advanced architecture tutorial  

  Two week iterations; collocated; pair programming; … 
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SWIFT: still early, but we’re seeing encouraging signs. 

  Data-centric view of multiphysics code 
•  “You’ll develop a database, whether you intend to or not.” 

  Grappling with C++, OOP, generic programming 
•  what’s the right mix? 

  Experimenting with different code approaches 

  STL/Thrust-style loops versus traditional loops 
•  reified loops promising for portability (cf. [2])  

•  need to be sure they can be optimized 

  Thinking of how data & algorithms will decompose 
•  for parallelism 

•  for resilience 
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The fundamentals still apply. 

  Develop a mental model of the computation before coding. 

  Write to a model of the computation, not to a machine. 
•  ahem, OpenCL 

•  re-implement the model for different architectures 

  Communicate the model to the maintainer 

  Architecture breaks iteration 
•  different vector sizes, memory characteristics... 

•  reify iteration! 

  Beware of shared mutable state (e.g. IMC tallies) 
•  shared concurrently between threads 

•  shared sequentially between functions/modules/packages 

  Restrict context of code 
•  greater composability, modularity 
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Domain scientists are not trained in the fundamentals of 
computing 

  Typical training: Fortran book, mentor’s code 

  Advanced training: C++ book, mentor’s code 

  Mental horizon restricted to code artifacts 
•  namely: doubles, ints, arrays, loops 

  Computation appears to be a purely phenomenological 
undertaking 

“Computer science is no more about computers  

than astronomy is about telescopes” 
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Languages give us great leverage on how we think 

  Languages and programming methods exert enormous 
influence on our thinking 

  Scientific simulation has a de facto language monoculture 
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Languages give us great leverage to improve 

  Languages and programming methods exert enormous 
influence on our thinking 

  Scientific simulation has a de facto language monoculture 
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Languages give us great leverage to improve 

  Languages and programming methods exert enormous 
influence on our thinking 

  Scientific simulation has a de facto language monoculture 

  We want languages/methods that encourage: 
•  forming a clear model of the computation 

•  expressing the model in the code 

•  demonstrating correctness before running (less debugging) 

—  testing shows lack of failure detection, not correctness 

•  careful control of state mutation 

•  reification of control flow 

•  reusability & composability 

  NB Not trying to find THE language 
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What about Object Oriented Programming? 

  May be a good place to end up, but it’s hard to get there 
•  OOP suffers from (at least) poor presentation 

•  Emphasizes metaphor over math 

  OOP is “close to home”  
•  easy to bring bad habits along 

  OTOH:  
•  thinking in design patterns a step up 

  Distinguish C++ from OOP 

Best OOP advice ever: 

  “Model the computation, not the domain.” [3] 
•  typical presentation other way around 
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Maybe we need to look farther afield... 
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Suggestion:   try Haskell 
(or any functional programming language) 

  Many FP languages today—not just LISP 
•  ML, OCaml, Haskell; Erlang; JVM: Scala, Clojure; .Net: F# 

  FP emphasizes thinking in expressions, not machines 

  Type systems are a great tool for expressing abstractions 

  FP culture puts high premium on correctness 

  FP compilers are getting good at performance 
•  fast, declarative stencil codes in Haskell [5] 

•  SIMD support now going into Glasgow Haskell Compiler [6] 

•  our own evaluation confirms this [8] 

  FP is hard 
•  because you’re learning something new 

•  some ideas introduced too soon  
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Summary 

  Programming advanced architectures is quite plausible 

  Roadrunner is the foundation on which we’ve built our 
advanced architectures efforts 

  We’re putting that experience to work in projects like 
SWIFT 

  Haskell will change how you think about programming. 

  Hope we’ll see more experimentation with languages/
methods. Chapel? Go? D? Scala? 

Thank you  
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additional slides 
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McPhD: initial effort to evaluate FP for simulations 

  McPhD: neutrino Monte Carlo transport [8] 
•  1D, spherical, analytic cross sections 

  Clear separation in code between event generation 
(particle tracking) and event consumption (tallying) 
•  compiles to tightly coupled loop 

•  key insight for moving MC to GPU, vectorization 

  Example of reified iteration 
•  simple approach to SMP parallelism  

  Good performance: matches a C++ analogue 

  No show stoppers as far as we’ve gone 

  Still much to learn 
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What about functional programming? 

Take Haskell (it’s one limit) [4] 

  Equational definition of functions => simpler reasoning 

  Pure functions: no (shared) mutable state! 

  Side effects only where allowed 

  Composability: build from small, correct pieces 

  QuickCheck: sophisticated testing [7] 

  Type system: lightweight formal methods 
•  prove, then check 
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Would domain scientists learn FP? 

  Definitely not all, probably not most 
•  enough to influence the culture? 

  Consider that programming, like physics, mixes 
mathematical and empirical aspects. 
•  Of course the mixes are different 

•  but the same elements should prove appealing to some 

•  FP exposes that mathematical side of programming 

Slide 27 


