
Operated by Los Alamos National Security, LLC for NNSA

LA-UR-12-21173	

Slide 1

How	
 can	
 applica+on	
 developers	
 respond	

to	
 advanced	
 architectures?	

Timothy	
 Kelley	

Applied	
 Computer	
 Science	
 Group	
 (CCS-­‐7)/LANL	
 	

Salishan	
 2012	
 	

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 2

Many worthy efforts are underway to address the
challenges ahead for scientific simulation…

  How do we build and run an exascale machine?

  What chips will we run on?

  What interconnect?

  How will the OS stack change?

  How will we think of data persistence?

  What programming languages? APIs? models?

  How do we evolve software?

  ... and many more!

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 3

Social challenges are important, too

  Who will program this system?
•  Better yet, who will debug it?

•  And how do we build this programmer?

•  What about as we move away from the heart of HPC?

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 4

Learning about where we need to go as scientific
simulation programmers

  Rewriting, re-thinking Implicit Monte Carlo transport for
Roadrunner

  The advanced architecture tutorial project

  SWIFT

  Language as a means to develop developers

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Implicit Monte Carlo simulates thermal X-ray transport
for time-dependent, nonlinear problems

  Fleck & Cummings time
discretization

  object-oriented, generic C++:
•  templated on mesh type,

freq type, particle type

  transports particles 3D,
meshes articulated in 1,2,3D

  multigroup frequency
treatment

  supports AMR

  two distributed parallel
modes: mesh replicated,
decomposed

  Wedgehog: Fortran callable
interface library

 Milagro  Wedgehog

 ClubIMC

 draco

 vendor libs

Los Alamos National Laboratory:CCS-7:Applied Computer Science

An app programmer’s view of Roadrunner hybrid node:
one Opteron + one Cell

 4 GB RAM Opteron network, IO

PPE 4 GB RAM

 Cell SPE

 Element Interconnect Bus

DACS

 SPE SPE SPE

 SPE SPE SPE SPE

SPE: “Synergistic
Processing Element”

Los Alamos National Laboratory:CCS-7:Applied Computer Science

IMC on Roadrunner timeline, 2006-11

  Summer, 2006: multiple efforts undertaken to port codes
to possible Roadrunner architectures.

  2006-7: Two efforts (Henning, Kelley) to port Implicit
Monte Carlo transport to Roadrunner.
•  Top-down: free reign with data structures, algorithms.

•  Bottom-up: migrate from existing code base.

•  Both approaches showed similar speedups after 8-9 months
work; bottom-up approach chosen.

  2008-9: Additional IMC physics ported, one major sync
with trunk. Much help from IMC code team! (Urbatsch,
Hungerford, Rockefeller)

  2010-11: RR branch merged with trunk, IMC team takes
control.

Slide 7

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We were successful on the IMC/Roadrunner project.

  Working, accelerated code

  Changed the MC transport algorithm
•  hierarchical concurrency

•  model expressed as set of C++ classes

•  model can be implemented for multiple machine architectures

  Decoupled particle generation from particle transport

  Introduced streams between particle generator, particle
transporter, and particle disposer
•  streams enable physical decoupling

  See [1] for much more detail

Slide 8

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We learned some interesting things.

  Advanced architectures create project management problems
•  the Roadrunner code was a major redesign & rewrite

—  introduced/rewrote ~10 kloc++

•  code was forked for several years (now merged!)

  Architecture-specific coding wasn’t the hard part

  Code not properly vectorized (ongoing)

  Tally strategy worked for ~10 threads (ongoing)
•  …probably won’t scale to 100+

  Debugging was painful
•  We found...gaps...between the machine and C

IMC was one of many efforts. Detailed presentations at

http://www.lanl.gov/roadrunner/rrseminars.shtml

Slide 9

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Roadrunner is the foundation of our efforts to
use advanced architectures

  Formed Applied Computer Science Group (CCS-7)
•  Unite application developers, computer scientists

•  Build on Roadrunner experience to continue moving forward

  Roadrunner technical seminar series (2008) [1]

  Roadrunner programming classes (2008-10)

  OpenCL programming classes (2011-2)

  XCP-CCS advanced architectures tutorial project (2011-2)

  The SWIFT project (2012->2015)

Slide 10

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We tried a new idea: ‘the advanced architecture tutorial’

  First iteration, FY 11; second iteration, FY 12

  Six participants from XCP & CCS divisions

  Format:
•  small (mini-app) code project.

•  sustained involvement—1/4 time for one year

  Goals:
•  communicate ideas about abstraction; improve software

engineering skills; learn to program advanced architectures.

  Some lessons learned:
•  C++ is hard to learn, harder to use well

•  programming advanced architectures is not the hard part

•  the hard part is developing the model of the computation

  Rolled those lessons into the 2012 iteration (Lally)

Slide 11

Los Alamos National Laboratory:CCS-7:Applied Computer Science

SWIFT

  New multiphysics code project (started 2012)

  Goals:
•  Develop more flexible approach to writing codes;

•  Incorporate newer programming techniques;

•  reduce time, cost to develop codes.

  50-50 mix of Roadrunner veterans and physics experts
•  including people from the advanced architecture tutorial

  Two week iterations; collocated; pair programming; …

Slide 12

Los Alamos National Laboratory:CCS-7:Applied Computer Science

SWIFT: still early, but we’re seeing encouraging signs.

  Data-centric view of multiphysics code
•  “You’ll develop a database, whether you intend to or not.”

  Grappling with C++, OOP, generic programming
•  what’s the right mix?

  Experimenting with different code approaches

  STL/Thrust-style loops versus traditional loops
•  reified loops promising for portability (cf. [2])

•  need to be sure they can be optimized

  Thinking of how data & algorithms will decompose
•  for parallelism

•  for resilience

Slide 13

Los Alamos National Laboratory:CCS-7:Applied Computer Science

The fundamentals still apply.

  Develop a mental model of the computation before coding.

  Write to a model of the computation, not to a machine.
•  ahem, OpenCL

•  re-implement the model for different architectures

  Communicate the model to the maintainer

  Architecture breaks iteration
•  different vector sizes, memory characteristics...

•  reify iteration!

  Beware of shared mutable state (e.g. IMC tallies)
•  shared concurrently between threads

•  shared sequentially between functions/modules/packages

  Restrict context of code
•  greater composability, modularity

Slide 14

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Domain scientists are not trained in the fundamentals of
computing

  Typical training: Fortran book, mentor’s code

  Advanced training: C++ book, mentor’s code

  Mental horizon restricted to code artifacts
•  namely: doubles, ints, arrays, loops

  Computation appears to be a purely phenomenological
undertaking

“Computer science is no more about computers

than astronomy is about telescopes”

Slide 15

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage on how we think

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

Slide 16

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage to improve

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

Slide 17

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage to improve

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

  We want languages/methods that encourage:
•  forming a clear model of the computation

•  expressing the model in the code

•  demonstrating correctness before running (less debugging)

—  testing shows lack of failure detection, not correctness

•  careful control of state mutation

•  reification of control flow

•  reusability & composability

  NB Not trying to find THE language

Slide 18

Los Alamos National Laboratory:CCS-7:Applied Computer Science

What about Object Oriented Programming?

  May be a good place to end up, but it’s hard to get there
•  OOP suffers from (at least) poor presentation

•  Emphasizes metaphor over math

  OOP is “close to home”
•  easy to bring bad habits along

  OTOH:
•  thinking in design patterns a step up

  Distinguish C++ from OOP

Best OOP advice ever:

  “Model the computation, not the domain.” [3]
•  typical presentation other way around

Slide 19

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Maybe we need to look farther afield...

Slide 20

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Suggestion: try Haskell
(or any functional programming language)

  Many FP languages today—not just LISP
•  ML, OCaml, Haskell; Erlang; JVM: Scala, Clojure; .Net: F#

  FP emphasizes thinking in expressions, not machines

  Type systems are a great tool for expressing abstractions

  FP culture puts high premium on correctness

  FP compilers are getting good at performance
•  fast, declarative stencil codes in Haskell [5]

•  SIMD support now going into Glasgow Haskell Compiler [6]

•  our own evaluation confirms this [8]

  FP is hard
•  because you’re learning something new

•  some ideas introduced too soon

Slide 21

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Summary

  Programming advanced architectures is quite plausible

  Roadrunner is the foundation on which we’ve built our
advanced architectures efforts

  We’re putting that experience to work in projects like
SWIFT

  Haskell will change how you think about programming.

  Hope we’ll see more experimentation with languages/
methods. Chapel? Go? D? Scala?

Thank you

Slide 22

Los Alamos National Laboratory:CCS-7:Applied Computer Science

references
[1] Roadrunner seminar series: http://www.lanl.gov/roadrunner/rrseminars.shtml

[2] Li-ta Lo et al, “PISTON: A Portable Cross-Platform Framework for

Data-Parallel Visualization Operators” http://viz.lanl.gov/projects/PISTONPaper.pdf

[3] Robert Webster, private comm.

[4] An interesting perspective on Haskell: “Escape from the Ivory Tower”

http://yow.eventer.com/events/1004/talks/1054

[5] Lippmeier et al. “Efficient parallel stencil convolution in Haskell”, http://
www.cse.unsw.edu.au/~benl/papers/stencil/stencil-icfp2011-sub.pdf

[6] SIMD support in Glasgow Haskell Compiler: http://ghc-simd.blogspot.com/

[7] Using QuickCheck in the automotive industry:

http://cufp.org/videos/model-based-testing-autosar-automotive-components

[8] https://github.com/losalamos/McPhD

Slide 23

Los Alamos National Laboratory:CCS-7:Applied Computer Science

additional slides

Slide 24

Los Alamos National Laboratory:CCS-7:Applied Computer Science

McPhD: initial effort to evaluate FP for simulations

  McPhD: neutrino Monte Carlo transport [8]
•  1D, spherical, analytic cross sections

  Clear separation in code between event generation
(particle tracking) and event consumption (tallying)
•  compiles to tightly coupled loop

•  key insight for moving MC to GPU, vectorization

  Example of reified iteration
•  simple approach to SMP parallelism

  Good performance: matches a C++ analogue

  No show stoppers as far as we’ve gone

  Still much to learn

Slide 25

Los Alamos National Laboratory:CCS-7:Applied Computer Science

What about functional programming?

Take Haskell (it’s one limit) [4]

  Equational definition of functions => simpler reasoning

  Pure functions: no (shared) mutable state!

  Side effects only where allowed

  Composability: build from small, correct pieces

  QuickCheck: sophisticated testing [7]

  Type system: lightweight formal methods
•  prove, then check

Slide 26

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Would domain scientists learn FP?

  Definitely not all, probably not most
•  enough to influence the culture?

  Consider that programming, like physics, mixes
mathematical and empirical aspects.
•  Of course the mixes are different

•  but the same elements should prove appealing to some

•  FP exposes that mathematical side of programming

Slide 27

