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Chip Multiprocessors

Growing parallelism multi-core chip architectures straining on- and off-chip
electronic interconnects; need more bandwidth with less power dissipation

Sun Niagara Sony/Toshiba/IBM Cell Intel Polaris
8 cores 9 cores 80 cores
2005 2006 2007
IntellaSys SEAforth 40C18 Tilera TILE-Gx100 NVIDIA Fermi
40 cores 100 cores 512 cores
2008 2009 2010
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Processor - Memory BW Performance
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Processor Pin Count Limitation
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Why Photonics is a good idea”?

Photonics changes the rules for Bandwidth, Energy, and Distance.

ELECTRONICS:

Buffer, receive and re-transmit at

every router.

Each bus lane routed
independently. (P o« N anes)

Off-chip BW is pin-limited and
power hungry.
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OPTICS:

» Modulate/receive high bandwidth
data stream once per
communication event.

= Broadband switch routes entire
multi-wavelength stream.

=  Off-chip BW = On-chip BW for
nearly same power.
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Silicon Photonic Interconnects in Computing

Silicon photonics: disruptive technology to address both on-
chip and off-chip communication bottlenecks.

High refraction index contrast materials allows small footprint
and low power devices.

Rules of scalability & energy efficiency differ substantially from
electronic links.

Bandwidth density: ~ 2 Tbps / 20
um pitch at chip’s edge.

Off-chip lasers - bulk of energy
dissipation happens off the chip.

[F. Doany et al., JLT 29 (4) (2011)]



Within-Chip Integration

Die Stacked
Co-packaged
\1 /
S Dol wemi———_

Fibers External Module

* Best performance gained by placing optic module as close as
possible to electronics.
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P/N-doping of silicon - diod
injection (p-i-n) or depletior

OOK modulator can be bas
resonance shifts.

Power dissipation « device
fJ/bit.

Integrated local heaters allc
stabilization.

Functionalities: modulators

Gbps), WDM mux / demukx, filters.
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m. Links

Wavelength selectivity inherently supports WDM configuration with a

»

single bus waveguide.

Analytical Model
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WDM channel count limited by

— Avoid resonance overlap.
FSR (<1/R) ~ 50 nm.

— Minimal channel spacing to
avoid inter-modulation x-talk
~04-0.6nm

Single link bandwidth density:

Relative Power Penalty (dB)
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= 12.5 Gbps modulation — 0.4 nm (50 GHz) channel spacing, Q ~ 2*104. Allows

125 channels — 1.56 Thps

= 25 Gbps modulation — 0.6 nm (75 GHz), Q ~ 104.

Allows 83 channels — 2.07 Thps
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mng Link Design

Design driven by “best possible” single-waveguide optical link in terms
of BW density and energy efficiency

Optical Dieﬂ Optical Die
Laser L
/= A — I Y
I a y
| ; |

Tx Array: SM fiber: Rx Array:

« Sior SiN bus WG « PM « Thermally tuned

* Inverse-taper edge * Negligible loss up microring filters
couplers to 1 km « Ge PD on drop ports

* Depletion-mode
microring modulators
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Power Efficiency - 2016 projection

@ 12.5 Gbps, 125 channels (1.56 Tbps) - power dissipation:

Modulator — 0.16 pJ/bit )
Demultiplexer (thermal) — 0.22 pJ/bit

~0.88 pJ/bit on optical die

Mod Driver — 0.1 pJ/bit .
TIA & SA — 0.4 pJ/bit Y BW density:
Laser (~1.1 mW optical) ~ @1% efficiency: 9 pJ/bit ~ 1 Tbps / mm?

@ 10% efficiency: 0.9 pJ/bit
@ 20% efficiency: 0.45 pJ/bit

~ 1 pJ/bit to drive signals up to and from the optical die (electronic subtask)

@ 25 Gbps, 83 channels (2.07 Tbps) - power dissipation:
N

Modulator — 0.09 pJ/bit

Demultiplexer (thermal) — 0.11 pJ/bit

Mod Driver — 0.3 pJ/bit

TIA & LA -1 pJ/bit )

Laser (~2.2 mW optical) ~ @1% efficiency: 9.6 pJ/bit BW density:
@ 10% efficiency: 0.96 pJ/bit ~ 2 Tbps / mm?*
@ 20% efficiency: 0.48 pJ/bit

~ 2 pJ/bit to drive signals up to and from the optical die (electronic subtask)
12

> ~1.5 pJ/bit on optical die




Corona Processor-to-DRAM Circuit-Switching Torus
Network Network

Architecture-focused Design

[U. of W hbia]
Large number of Missing device High insertion
ring resonators details for ring losses, due to
(over 1M) dimensions many

waveguide

Crossings

13



O
Spectrum of Feasibility

Corona [HP] PhotonicMesh [Columbia]

Device research
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* Mesh single-layer NoC designs’
scalability limited by crossing
losses

[J. Chan et al., JLT
28 (9) (2010)]

* Deposited photonics allows creation of multilayer designs

— SiN for low loss bus waveguides

— Poly-Si for E-O active components (modulators, switches)
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Summary Table of Silicon Photonic Materials

Na. Pro':.?:?;astion Ele:tcrtii(\::a:e"y_ C::gt(:islii:y =iz ComcpI:gEility
c-Si 1.7 dB/cm Yes No Yes Yes
Poly-Si Yes Yes Yes Yes
Si3N, 0.1 dB/cm Yes Yes Yes
a-Si:H 2dB/cm Yes - Yes

» Crystalline silicon (c-Si)

» Polycrystalline silicon (poly-Si)

e Silicon nitride (SizN,)

* (Hydrogenated) Amorphous Silicon (a-Si:H)

A. Biberman, OFC 2011
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mon Photonics

 Bulk of silicon photonics research based on etching SOI to
form optical structures.

Signal Line
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Input Port

Cornell/Columbia, 2010

IBM, 2010

» High optical-quality crystalline-Si. Thick BOX SOI provides
optical isolation from substrate. Single-plane architectures.

* In-package integration
— Die stacking / bonding - fine pitch electrical connectors allow high
bandwidth but fabrication complexity & cost significant.

— Monolithic - transistor real-estate, incompatibly-thick BOX (or thin
BOX with undercut), significant manufacturing process modification.
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Multilayer Integration for Photonic NoC
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Photonic Matrix Crossbar

[A. Biberman et al., OFC 2011 OMM?2] [A. Biberman et al., JETC 7 (2) (2011)]

* Multilayer design eliminates waveguide crossings to allow
improved Scalability 21 e Wa &



Optically connected memory
with deposited photonics

CMOS Back-End Photonic Deposition

AN

Lipson, Cornell




Optically interfacing processor with memory

: Standardized
Package-able Laser WDM gl ao ndkulat|on Optical Interface
Source Solution WDM Detection Bank Using Deposited
Technology

/Laser/
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Memory Node

Memory

» Processor-to-memory communication using optical I/O to go off-chip
» Photonic integration on CMOS

« WDM modulators and detectors to exploit wavelength parallelism
« Enhanced performance boost (Gb/s, pJ/bit) with SerDes integrated into HMC
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Photonic Network Design Exploration
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To/From
Memory Modules
& &

Processor Core

Ne’gwork Router
™)

Photonic Circuit-Switched DRAM Access




ircuit-Switched Memory Access

@0 Set up Switch Set up Switch
Is Write? eTE from MC to 1 from CAMM to
CAMM NoC [ core
\ Recei Set up Switch
eceive new et up Switcl
wm@» transaction Tf’a“;“ “e“"lm from MC to
7 request CAMM
T no
yes Queue

empty?
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Circuit-Switched Memory Access
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[G. Hendry et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded
Computing. Supercomputing '10]



Summary

Silicon photonics shaping to be the prime candidate to
address chip 1I/0 limitations: system wide high-
bandwidth density with extreme energy efficiency.

Optically connected memory - very compelling
application in near future

Deposition-based silicon-photonic fabrication: “leap
frog” solution for close integration with electronics.

Not just a “wire” replacement...potential for
revolutionizing across compute and memory
architectures.
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