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Astronomy:  Data-Driven Science

http://www.sciencecartoonsplus.com/contact.htm�


From Data-Driven to Data-Intensive
• Astronomy has always been a data-driven science

• It is now a data-intensive science:  
Astroinformatics
– And it will become even more data-intensive in the coming decade(s)

• Some key data-driven questions for astronomers:
– What is it?

– Where is it?

– What causes that behavior?

– When did it form?

– How did it form?

– Why did it do that?

– Who will let me use their telescope to get more data???



Informatics = Data-Enabled Science:
Scientific KDD (Knowledge Discovery from Data)

• Characterize the known (clustering, 
unsupervised learning)

• Assign the new (classification, 
supervised learning)

• Discover the unknown (outlier 
detection, semi-supervised learning)

• Benefits of very large datasets:
• best statistical analysis of “typical” events
• automated search for “rare” events

Graphic from S. G. Djorgovski



• Past: 100’s to 1000’s of independent distributed heterogeneous 
data/metadata/information repositories.

• Today:  Astronomical data are now accessible uniformly from federated
distributed heterogeneous sources = the Virtual Observatory.

• Future: Astronomy is and will become even more data-intensive in the 
coming decade with the growth of massive data-producing sky surveys.

• Astroinformatics (data-intensive astronomical research) will become a 
stand-alone scientific research discipline (similar to Bioinformatics, 
Geoinformatics, Cheminformatics, and many others). 
– Informatics is the discipline of organizing, accessing, mining, & analyzing 

information describing complex systems (e.g., the human genome, or Earth, 
or the Universe).

– X-informatics is a key enabler of scientific discovery in the era of data-
intensive science.   (X = Bio, Geo, Astro, ...) (Jim Gray, KDD-2003)

• Astroinformatics (intelligent data discovery, browse, integration, 
mining, and visualization research tools) will enable exponential 
knowledge discovery within exponentially growing data collections.

The Changing Landscape of 
Astronomical Research



Astronomy Data Environment: 
Sky Surveys

• To avoid biases caused by limited samples, astronomers 
now study the sky systematically = Sky Surveys

• Surveys are used to measure and collect data from all 
objects that are contained in large regions of the sky, in a 
systematic, controlled, repeatable fashion.

• These surveys include (... this is just a subset):
– MACHO and related surveys for dark matter objects:  ~ 1 Terabyte
– Digitized Palomar Sky Survey:  3 Terabytes
– 2MASS (2-Micron All-Sky Survey):  10 Terabytes
– GALEX (ultraviolet all-sky survey):  30 Terabytes
– Sloan Digital Sky Survey (1/4 of the sky):  40 Terabytes
– and this one is just starting:  Pan-STARRS:  40 Petabytes!

• Leading up to the big survey next decade:
– LSST (Large Synoptic Survey Telescope): 100 Petabytes!
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LSST = 
Large 

Synoptic 
Survey 

Telescope
http://www.lsst.org/

8.4-meter diameter
primary mirror =
10 square degrees!

Hello !

(design, construction, and operations of telescope, observatory, and data system: NSF) (camera: DOE)

(mirror funded by private donors)

http://www.lsst.org/�


LSST in time and space:
– When?     2016-2026
– Where?   Cerro Pachon, Chile

Model of
LSST Observatory

LSST Key Science Drivers:  Mapping the Universe
– Solar System Map (moving objects, NEOs, asteroids: census & tracking)
– Nature of Dark Energy (distant supernovae, weak lensing, cosmology)
– Optical transients (of all kinds, with alert notifications within 60 seconds)
– Galactic Structure (proper motions, stellar populations, star streams)



Observing Strategy: One pair of images every 40 seconds for each spot on the sky,
then continue across the sky continuously every night for 10 years (2016-2026), with 
time domain sampling in log(time) intervals (to capture dynamic range of transients).

• LSST (Large Synoptic Survey Telescope):
– Ten-year time series imaging of the night sky – mapping the Universe !
– 100,000 events each night – anything that goes bump in the night ! 
– Cosmic Cinematography!  The New Sky! @ http://www.lsst.org/

Education and Public Outreach
have been an integral and key
feature of the project since the
beginning – the EPO program 
includes formal Ed, informal Ed,
Citizen Science projects, and
Science Centers / Planetaria.



LSST Data Challenges

Camera Specs: (pending funding from the DOE)
201 CCDs @ 4096x4096 pixels each!
= 3 Gigapixels = 6 GB per image, covering 10 sq.degrees 
= ~3000 times the area of one Hubble Telescope image

• Obtain one 6-GB sky image in 15 seconds
• Process that image in 5 seconds
• Obtain & process another co-located image for science validation 

within 20s (= 15-second exposure + 5-second processing & slew)
• Process the 100 million sources in each image pair, catalog all 

sources, and generate worldwide alerts within 60 seconds  (e.g., 
incoming killer asteroid)

• Generate 100,000 alerts per night (VOEvent messages)
• Obtain 2000 images per night
• Produce ~30 Terabytes per night
• Move the data from South America to US daily
• Repeat this every day for 10 years (2016-2026)
• Provide rapid DB access to worldwide community:

– 100-200 Petabyte image archive
– 20-40 Petabyte database catalog

The LSST focal plane array
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The LSST Data Challenges

• Massive data stream: ~2 
Terabytes of image data per 
hour that must be mined in 
real time (for 10 years).

• Massive 20-Petabyte 
database: more than 50 
billion objects need to be 
classified, and most will be 
monitored for important 
variations in real time.

• Massive event stream: 
knowledge extraction in real 
time for 100,000 events each 
night.  



The LSST Data Challenges

http://universe.ucdavis.edu/docs/data-challenge.pdf

http://universe.ucdavis.edu/docs/data-challenge.pdf�
http://universe.ucdavis.edu/docs/data-challenge.pdf�
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XLDB:  an approach to petascale databases
• XLDB = eXtremely Large Databases

• Since 2007:  3 XLDB Workshops and 1 working meeting

• XLDB4 conference:  
– October 5-7, 2010 at Stanford/SLAC

– Expect ~200 attendees

• The result is a new design for petabyte-scale scientific 
databases = SciDB
– SciDB is based on the new array-based data model

– Relational data model (RDBMS) is so “last century”

• References:
– XLDB : http://www-conf.slac.stanford.edu/xldb

– SciDB:  http://scidb.org
16
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• Probabilistic Cross-Matching of objects from different catalogues
• The distance problem (e.g., Photometric Redshift estimators)
• Star-Galaxy Separation
• Cosmic-Ray Detection in images
• Supernova Detection and Classification
• Morphological Classification (galaxies, AGN, gravitational lenses, ...)
• Class and Subclass Discovery (brown dwarfs, methane dwarfs, ...)
• Dimension Reduction = Correlation Discovery
• Learning Rules for improved classifiers 
• Classification of massive data streams
• Real-time Classification of Astronomical Events 
• Clustering of massive data collections
• Novelty, Anomaly, Outlier Detection in massive databases

Some key astronomy problems that require 
informatics and data science techniques



Basic Astronomical Knowledge Problems – 1

• The distance problem:
– Finding the distance to things on the “2-D” sky
– We see everything in 2-D projection
– But the Universe is deep in both space and time
– We need distance to understand the physics and 

astrophysics of objects in space and time:
• Space:  Where are they?  What are their neighbors?
• Time:  When did they form?  How long do they live?

– What observational parameters correlate with distance?
– Are there combinations (linear or non-linear functions) of 

observed parameters that correlate more strongly with 
distance (i.e., what is the most accurate estimator)?

– What is the most unbiased estimator for distance?



Basic Astronomical Knowledge Problems – 2
• The clustering problem:

– Finding clusters of objects within a data set
– What is the significance of the clusters (statistically 

and scientifically)?
– What is the optimal algorithm for finding friends-of-

friends or nearest neighbors?
• N is >1010, so what is the most efficient way to sort?
• Number of dimensions ~ 1000 – therefore, we have an 

enormous subspace search problem

– Are there pair-wise (2-point) or higher-order (N-way) 
correlations?

• N is >1010, so what is the most efficient way to do an N-point 
correlation? 

– algorithms that scale as N2logN won’t get us there



Basic Astronomical Knowledge Problems – 3

• Outlier detection: (unknown unknowns)
– Finding the objects and events that are outside the 

bounds of our expectations (outside known clusters)
– These may be real scientific discoveries or garbage
– Outlier detection is therefore useful for:

• Novelty Discovery – is my Nobel prize waiting?
• Anomaly Detection – is the detector system working?
• Data Quality Assurance – is the data pipeline working?

– How does one optimally find outliers in 103-D 
parameter space?  or in interesting subspaces (in 
lower dimensions)?

– How do we measure their “interestingness”?



• The dimension reduction problem:
– Finding correlations and “fundamental planes” of parameters
– Number of attributes can be 

hundreds or thousands
• The Curse of High 

Dimensionality !
– Are there combinations 

(linear or non-linear 
functions) of observational 
parameters that correlate 
strongly with one another?

– Are there eigenvectors or 
condensed representations 
(e.g., basis sets) that 
represent the full set of 
properties?

Basic Astronomical Knowledge Problems – 4



Basic Astronomical Knowledge Problems – 5

• The cross-match problem:
– Matching objects in Catalog A to the corresponding 

objects in Catalog B
• N is >1010, so what is the most efficient way to proceed?

– What is the likelihood function?
– How do we include uncertainties in the scientific 

measurements?
– How do include constraints from other information 

sources?
– Objects are moving ... hundreds of them! ... Matching 

multiple observations of the same object is a 
challenge:

• So what is the optimal solution (all objects cross-matched, 
maximizing the global likelihood in a massive data cube)? 



Basic Astronomical Knowledge Problems – 6

• The classification problem:
– Classifying an object based upon observed attributes 

(using rules learned from the historical training data)
• e.g., Star-Galaxy separation:  very important problem !

– There are dozens (hundreds?) of classification 
algorithms, so which algorithm is optimal when there 
are hundreds to thousands of attributes?

• The class discovery and sub-class discovery problem:
– Are there new classes?  Are there new subclasses?

• How do you discover them when Nitems≈1010, Ndim≈103?
• Which algorithms distinguish subclasses best? ...

– SVM (Support Vector Machines), PCA (Principle Component 
Analysis), ICA (Independent Component Analysis), or ???



Basic Astronomical Knowledge Problems – 7

• The superposition / decomposition problem:
– Finding distinct clusters (Classes of Object) among 

objects that overlap in parameter space

– What if there are 1010 objects that overlap in a 103-D 
parameter space?

– What is the optimal way to separate and extract the 
different unique classes of objects?

– How are constraints applied (as in operations research 
or linear programming)?



• The optimization problem:
– Finding the optimal (best-fit, global maximum 

likelihood) solution to complex multivariate 
functions over very high-dimensional spaces

Basic Astronomical Knowledge Problems – 8



Example:  Petascale Computational & 
Data Science Challenge problem for LSST

• Find the optimal simultaneous solution for 20,000,000,000 objects’ 
shapes across 2000 image planes, each of which has 201x4096x4096 
pixels ... 1023 floating-point operations!
– This illustrates an example for just one such object:

References:  
http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf
http://code.google.com/p/multifit/

http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf�
http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf�
http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf�
http://code.google.com/p/multifit/�


The LSST Petascale Challenges
(document is available on-line)

http://universe.ucdavis.edu/docs/LSST_petascale_challenge.pdf

http://universe.ucdavis.edu/docs/LSST_petascale_challenge.pdf�
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Distributed Data
• Distributed data are the norm (across people, 

institutions, projects, agencies, nations, …) 
• Data are usually heterogeneous (e.g., 

databases, images, catalogs, file systems, web 
interfaces, document libraries, binary, text, 
structured, unstructured, …)

• Scientists want to query and to mine these 
data (= 2 different user scenarios)

• Virtual Observatory implementations enable 
data discovery and integration, but do not yet 
facilitate large-scale data mining

30



Data Bottleneck
• Mismatch:

• Data volumes increase 1000x in 10 yrs

• I/O bandwidth improves ~3x in 10 years

• Therefore … we need Distributed Data Mining

31



Why Distributed Data Mining (DDM)?

… many great scientific
discoveries have come
from inter-comparisons
of diverse data sources:
- Quasars
- Gamma-ray bursts
- Ultraluminous IR galaxies
- X-ray black-hole binaries
- Radio galaxies
- . . .

Because …

“Just 
Checking”

32



DDM for Scientific Knowledge Discovery

Data  → Information   → Knowledge 33



Distributed Data Mining (DDM)
• DDM comes in 2 types:

1. Distributed Mining of Data
2. Mining of Distributed Data

• Type 1 requires sophisticated algorithms that 
operate with data in situ

• Type 2 takes many forms, with data being 
centralized (in whole or in partitions) or data 
remaining in place at distributed sites

• References:  http://www.cs.umbc.edu/~hillol/DDMBIB/
– C. Giannella, H. Dutta, K. Borne, R. Wolff, H. Kargupta. (2006). Distributed Data Mining for Astronomy Catalogs. Proceedings of 9th Workshop on Mining 

Scientific and Engineering Datasets, as part of the SIAM International Conference on Data Mining (SDM), 2006.  [ 
http://www.cs.umbc.edu/~hillol/PUBS/Papers/Astro.pdf ]

– H. Dutta, C. Giannella, K. Borne and H. Kargupta. (2007). Distributed Top-K Outlier Detection from Astronomy Catalogs using the DEMAC System. Proceedings 
of the SIAM International Conference on Data Mining, Minneapolis, USA, April 2007.  [ http://www.cs.umbc.edu/~hillol/PUBS/Papers/sdm07.pdf ]

34
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P2P Data Mining

• P2P Data Mining represents one possible 
implementation of DDM

• P2P has two types:
– Task-parallel :: the compute processes are 

distributed across the nodes
– Data-parallel :: the data are distributed across 

the nodes
• References: http://www.cs.umbc.edu/~hillol/DDMBIB/ddmbib_html/DistSys.html

– S. Banyopadhyay, C. Giannella, U. Maulik, H. Kargupta, S. Datta, and K. Liu. Clustering distributed data streams in peer-to-peer 
environments. Information Science, 176(14):1952-1985, 2006.
[ http://www.cs.umbc.edu/~hillol/PUBS/p2pDM.pdf ]

– K. Bhaduri, R. Wolff, C. Giannella, H. Kargupta. (2008). Distributed Decision Tree Induction in Peer-to-Peer Systems. Statistical Analysis 
and Data Mining. Volume 1, Issue 2, pp. 85-103. [ http://www.cs.umbc.edu/~hillol/PUBS/Papers/sam08_dtree_bhaduri.pdf ] 

– S. Datta, K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta. (2006). Distributed Data Mining in Peer-to-Peer Networks. (Invited submission 
to the IEEE Internet Computing special issue on Distributed Data Mining), Volume 10, Number 4, pp. 18--26.  

[ http://www.cs.umbc.edu/~hillol/PUBS/P2PDM.pdf ]
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Implementation:  PADMINI
P2P Astronomy Data MINIng



Our Project Plans
• NASA-funded (AISR) project to implement a P2P 

distributed data mining system

• Provide a small number of “useful” data mining algorithms 
(one-to-one mapping with science use cases):

• Classification :: P2P Tagging of Text Documents

• Outlier detection :: Novelty Discovery

• Correlation Discovery :: PCA

• Select problems and algorithms that are decomposable:  
task-parallel and/or data-parallel

• Implement system within VO framework (currently 
working on astronomical data – hence, we focus on VAO = 
the new Virtual Astronomy  Observatory)

38



Design Challenges for DDM system

39

End-user’s 
science problem:

very specific

DDM algorithms:

very specific

Interfaces to:
• users
• data
• DDM algorithms
• computing infrastructure

…  very general

Solution:  a loosely-coupled system  



user
User

Interface

Metadata with 
Cross matched   
information

Portion    
of 
Metadata 
chosen 
based on 
user 
query

Architecture-NASA project
(back-end)

40

• Loosely-coupled system:  the back-end implementation is 
loosely coupled to front-end user interface & services

• Front-end implementation choices:
• Our own (simple user-selection: data sources, attributes, mining algorithms)

• GoogleSky

• VO SkyNode



user
User

Interface

Metadata with 
Cross matched   
information

Portion    
of 
Metadata 
chosen 
based on 
user 
query

Architecture-NASA project
(back-end)
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• Loosely-coupled system:  the back-end implementation is 
loosely coupled to front-end user interface & services

• Back-end implementation choices:
• Hadoop (framework for distributed data-intensive computing)

• DDM tool kit (developed at UMBC)

• Any other user-provided plug-N-play data mining toolkit



user
User

Interface

Metadata with 
Cross matched   
information

Portion    
of 
Metadata 
chosen 
based on 
user 
query

Architecture-NASA project
(back-end)

42

• Loosely-coupled system:  the back-end implementation is 
loosely coupled to front-end user interface & services

• Data mining results – output choices:
• Simple data table in XML format: VOTable

• PMML (Predictive Modeling Markup Language) = XML-formatted 
results from data mining  model (e.g., decision tree rules, or PCA components).



Outlier Detection with Hadoop
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• Informatics enables transparent reuse and analysis of 
scientific data in inquiry-based classroom learning 
(http://serc.carleton.edu/usingdata/).

• Students are trained:
– to access large distributed data repositories
– to conduct meaningful scientific inquiries into the data
– to mine and analyze the data
– to make data-driven scientific discoveries

• The 21st century workforce demands training and skills in 
these areas, as all agencies, businesses, and disciplines are 
becoming flooded with data.

• Numerous Data Sciences programs now starting at several 
universities (GMU, Caltech, RPI, Vanderbilt, Michigan, 
Cornell, …).

• CODATA ADMIRE initiative:  Advanced Data Methods and 
Information technologies for Research and Education

Informatics-based Science Education



http://mason.gmu.edu/~kborne/Borne_data_sciences_education_CDH_EPO.pdf
http://www8.nationalacademies.org/astro2010/publicview.aspx

http://arxiv.org/abs/0909.3895

Data Science Education paper available !

http://mason.gmu.edu/~kborne/Borne_data_sciences_education_CDH_EPO.pdf�
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http://mason.gmu.edu/~kborne/Borne_astroinformatics_CDH_FFP_APP.pdf
http://www8.nationalacademies.org/astro2010/publicview.aspx

http://arxiv.org/abs/0909.3892

Astroinformatics Research paper available !
Addresses the data science challenges, research agenda, application areas, 
use cases, and recommendations for the new science of Astroinformatics.

http://mason.gmu.edu/~kborne/Borne_astroinformatics_CDH_FFP_APP.pdf�
http://www8.nationalacademies.org/astro2010/publicview.aspx�
http://www8.nationalacademies.org/astro2010/publicview.aspx�
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