
1

Data Intensive Computing

Programming models for the 
LexisNexis High Performance 

Computing Cluster



2

Topics

About LexisNexis Risk Solutions
About our Technology
About Data Intensive Computing
Programming Model
Adding a new Data Source
Creating a Linking Application
Conclusion



3

World headquarters: New York City
Parent company: Reed Elsevier
Global reach: customers in more than 100 countries
Employees: 18,000 globally
Revenue: $3.6 billion in 2008
Searchable online documents: more than 5 billion
Information sources: 40,000
Number of offices worldwide: 110

About LexisNexis®

• All 50 states, 70 percent 
of local government and 
almost 80 percent of 
federal agencies use our 
services to make the 
world a safer place. In 
addition, we support 90 
percent of the Fortune 
500 companies and the 
leading non-profits in 
America. 

3



4

Proven Industry Leader

20 billion public and proprietary records 
Coverage on more than 400 million individuals 
Coverage on more than 150 million business locations
Patent-pending data matching and linking logic
$1.5 billion in revenues in 2008
Expanded services and solutions added with Reed 
Elsevier acquisition of ChoicePoint ® (September, 2008)

LexisNexis® Risk Solutions is a leader 
for how information advances and 
protects people, industry and society: 

4



5

LexisNexis Data Analytics 
Supercomputer

For more than thirty years, LexisNexis has been 
on the frontier of large-scale data management 
and analysis. Powered by high performance 
computing cluster technology (HPCC), the 
LexisNexis Data Analytics Supercomputer (DAS) 
was originally designed to:

Solve the organization’s internal data 
management and large-scale data analytics 
challenges.

Deliver the speed and accuracy demanded by 
its expanding customer base. 

Today, DAS powers all of the company’s risk 
management solutions and helps customers solve 
large, complex data challenges such as national 
security issues.

DAS supports 
millions of 
transactions per 
day and performs 
10 times faster 
than the next 
fastest system for 
large data analysis.

5



6

Intuitive Programming 
Language

The core of DAS is the Enterprise Control Language (ECL). ECL 
programming efficiency is proven to be far greater than other 
approaches.

Declarative, non-procedural programming language optimized 
for large-scale data management and query processing

Automatically manages workload distribution across all nodes, 
including all aspects of the massive data joins, sorts and builds 
that truly differentiate DAS from other technologies in its 
ability to provide flexible data analysis on a massive scale. 

Benefits programmers, who do not need to understand how to 
manage the parallel processing environment. As a result, users 
can express complex queries with less programming time and 
fewer lines of code than other conventional programming  
languages.

6



7

Landing Zone

Data Refinery Data Delivery

Admin & Mgmt

LZ: Disc Storage, 
sized as needed

Clusters sizes of 
40-400 nodes

Unlimited number 
of clusters

Multi-THOR: 
overlapping 
virtualized 
clusters running 
on same 
hardware

2U config contains 4 nodes and redundant power 
supplies. Each node has:

•Intel Xeon, Quad core, hyper-threaded processor 
(2.27 GHz), model # E5520

•2TB of available storage
•RAID 5 support
•3 drives (2TB each drive). This includes redundancy due 
to RAID and mirroring
•12GB RAM
•8MB L2 cache

Clusters sizes of 
1-100 nodes

Unlimited number 
of clusters.

Typically 2-3 
clusters load-
balanced for 
24x7 uptime

Typically 10 admin 
nodes for a system.

1 additional for each 
THOR cluster 

Force 10 Non-Blocking 
Switch, sized accordingly 

Hardware Architecture Components



8

Software Architecture Components



9

Data Intensive Computing

– Traditionally supercomputing was focused on compute-intense 
problems such as weather forecasting and crash simulations. 
Compute-intense applications also create data that needs to be 
managed.

– Now a new type of supercomputing has emerged – data intensive 
supercomputing clusters -- to focus on data-intense problems 
driven by the volume of data generated by digital technology.  
Everybody has tons of data, but the question is how do you 
optimize it.

– Relational database solutions failed to provide adequate 
performance

• Expensive
• Slow to process data
• Inflexible
• Internal Research concluded that “shrink-wrapped” software solutions 

cannot address problem



10

Data Intensive Computing Examples

Data Fusion and Linking
– Thousands of disparate sources, few or no 

equality match fields
– Mostly fuzzy or probabilistic match criteria

Data Mining
– Association mining and rule discovery
– Clique discovery

Risk Modeling and Analysis



11

Programming Model

There are Attributes and Actions
– Attributes declare or defines “what is to be 

done”
– Actions trigger work

Attributes are inherently re-usable
Attributes are very much like functions



12

Programming Model (continued)

Example of attributes and actions:
FirewallLogRecord := RECORD // Define how data is 

stored

UNSIGNED4 sourceIP;

UNSIGNED4 destinationIP;

UNSIGNED2 sourcePort;

UNSIGNED2 destinationPort;

UNSIGNED4 bytesTransferred;

UNSIGNED8 dateTimeStamp;

END;

dsFirewallLog := DATASET(‘My::Firewall::data’, FirewallLogRecord, FLAT);

COUNT(dsFirewallLog); // An action, perform a count

topTransferRecords(c=10) := TOPN(dsFirewallLog, c, bytesTransferred);

OUTPUT(topTransferRecords(100)); // An action, writes to top 100



13

Programming Model (continued)

Good definitions are re-used
topSourceDestination := topTransferRecords(1);

selectedFirewallRecords 

:= JOIN(dsFirewallLog, topSourceDestination,

LEFT.sourceIP=RIGHT.sourceIP

AND LEFT.destinationIP=RIGHT.destinationIP,

TRANSFORM(FirewallLogRecord, SELF:=LEFT),

LOOKUP);

OUTPUT(selectedFirewallRecords);

// list all entries associated with the high transfer

// Note definitions are independent wrt data nodes



14

Programming Model (continued)

Note that a sequence of records is a first 
class object

Iteration through a sequence of records is 
implied

In our example, the record distribution was 
opaque



15

Adding a new Data Source

Data can be XML, Delimited Values (e.g., 
TSV, CSV), Fixed length records

Encoding can be Unicode (UTF-8, UTF-16, 
UTF-32), ASCII, EBCDIC, or any single 
byte encoding

Standard data types of binary, floating point, 
packed decimal, character strings, and 
binary strings



16

Adding a new Data Source (continued)

Steps:
– Copy initial data set or data sets to the 

landing zone and spray the data
– Create the attribute for the record definition
– Create the attribute for the dataset
– Create the record structure or structures for 

the normal form of the data if desired
– Create the attribute that provides the normal 

form data



17

Building a Linking Application

Analysis of data once sprayed
– Field value ranges and uniques
– Detect dirty data
– Field level cleaning and encoding

Review field semantics for linking
– Name of vessel versus name of person

Normalize encoding, if possible
– Non-equality matching



18

Building a Linking Application (continued)

Use of Multiple Blocking
– Multiple joins with various join criteria

Incorporate statistical data
– Weight of the field based upon specificity
– Weight of the value based upon frequency

Score the matches, and summarize
Record the linkages



19

Building a Linking Application

Examine the boundary for errors, and adjust 
weights or add dimensions

Examine data and work distribution at the 
nodes, looking for skew
– May need to perform explicit data distribution 

of naïve approach has too much skew
Add inquiry or analysis applications
Add automation for ongoing data loads



20

Conclusion

Shared nothing cluster of commodity 
hardware provides an inexpensive 
hardware platform

Declarative nature of ECL provides means 
for automatic parallelization

Tuning applications may involve tuning the 
data distribution


	Data Intensive Computing
	Topics
	Slide Number 3
	Proven Industry Leader
	LexisNexis Data Analytics �Supercomputer
	Intuitive Programming �Language
	Hardware Architecture Components
	Software Architecture Components
	Data Intensive Computing
	Data Intensive Computing Examples
	Programming Model
	Programming Model (continued)
	Programming Model (continued)
	Programming Model (continued)
	Adding a new Data Source
	Adding a new Data Source (continued)
	Building a Linking Application
	Building a Linking Application (continued)
	Building a Linking Application
	Conclusion

