
Requirement and Performance ofRequirement and Performance of
Data Intensive, Irregular Applications

John Feo

Center for Adaptive Supercomputing Softwarep p p g
Pacific Northwest National Laboratory

April, 2010

Center for Adaptive Supercomputer Software

A RESEARCH CENTERA RESEARCH CENTER
FOR

LARGE-SCALE DATA ANALYTICS
Sponsored by DODSponsored by DOD

Analytic methods and applications
FaceBook - 300 M users

National Security

SmartGrid

Bus

Hayashi

Train
Anthrax

Money
Endo

Community Activities

Connect-the-dots

Hayashi
Zaire

Security

N-x contingency analysis

Blog Analysis
Semantic Web

Anomaly detection

Community thought leaders
People, Places, & Actions

Graphs are not grids

Graphs arising in informatics are very different from the
grids used in scientific computing

Scientific Grids Graphs for Data Informatics

Static or slowly involving

Planar

Dynamic

Non-planar

C i i l l d d iNearest neighbor communication

Work performed per cell or node

Work modifies local data

Communications are non-local and dynamic

Work performed by crawlers or autonomous agents

Work modifies data in many places

Small-world and scale-free

In low diameter graphs
work explodes

“Six degrees of separation”

work explodes
difficult to partition
high percentage of nodes are visited

In scale-free graphs
difficult to partition

Large hubs are in grey

work concentrates in a few nodes

Graph methods
Paths

Shortest path
Betweenness

Influential Factors
Degree distribution

Normal
Load imbalance

N l
Min/max flow

Structures
S i t

Normal
Scale-free

Planar or non-planar

Non-planar

Difficult to partition

Spanning trees
Connected components
Graph isomorphism

Static or dynamic

Weighted or unweighted

Concurrent inserts
and deletions

Groups
Matching/Coloring
Partitioning
Equivalence

Weight distribution

Typed or untyped edges
Equivalence

Orderings
Priority
Topological
Temporal

Challenges

Problem size
Ton of bytes, not ton of flops

Little data locality
Have only parallelism to tolerate latencies

Low computation to communication ratio
Single word access
Th d li i d b l d dThreads limited by loads and stores

Synchronization points are simple elements
Node edge recordNode, edge, record

Work tends to be dynamic and imbalanced
Let any processor execute any threadLet any processor execute any thread

System implications

Global address space
Direct loads and stores
MC and network support for single word accesses

Multi-threaded processors
Single cycle context switching

Multiple outstanding loads and stores per thread

Full-and-empty bits

Message driven operations
D i kDynamic work queues
Hardware support for thread migration

Systems for large-scale analytics

Cray XMT

Netezza TwinFin

Cray XMT

Graph
resides in

XMT memory

RDBS
runs on
cluster

Maximum matching

A matching M is a subset of edges such that no two edgesA matching M is a subset of edges such that no two edges
in M are incident on the same vertex

Maximum matching is a matching that maximizes someMaximum matching is a matching that maximizes some
cost function

Number of edges
1Weights

1000
1

1

11

1

Application of matching

Sparse linear solvers

fBlock triangular form

Graph partitioners

Bioinformatics

Web technology

Sparse derivative computationsp p

High speed network switching

Maximum weight matching algorithms

Polynomial time algorithm first due to Edmonds
Path, trees, and flower methodPath, trees, and flower method

Approximate “greedy” algorithm is fast, simple, and usually
give good resultsgive good results

1 4 Hoepman’s Algorithm1

3

4

5

35 25

5

2015

5

2

3

6

5

20

10

15

10

Parallel algorithm (Halappanavar, Dobrian, and Pothen)

Uses queues to maintain proposals and status

OOn clusters (IBM Blue Gene/P)

Partition graph
Ghost cells for non-local neighbors

P0 P1

Ghost cells for non local neighbors
Local queues … pass as bulk messages

On shared memory machine (Cray XMT)On shared memory machine (Cray XMT)

Shared queues
Ghost vertices

Cross-edges

DM parallel algorithm (Halappanavar, Dobrian, and Pothen)

1. Initialize data structures

2. Phase 1: Independent Computation
Identify locally-dominant edges and match
Send messages as needed (cross-edges)

3. Phase 2: Shared Computation
Receive and process messages
Match if locally-dominant
Send messages as neededSend messages as needed
Repeat until no more edges can be matched

Grids, Erdős–Rényi, and Scale-Free Graphs
USA Roadmap

METIS Partitioner

Scale-Free

Erdős–Rényi

Effect of weight distribution

0 ≤ W e i g h t [i] < N 0 ≤ W e i g h t [i] < < N

c
h

e
d

g []

c
h

e
d

g []

e
s

 M
a

tc

e
s

 M
a

tc

#
 N

o
d

#
 N

o
d

I t e r a t i o n I t e r a t i o n

Real World

DataFlow algorithm

Nodes propose by setting signals on edges
Very fine grain synchronization  full/empty bits

Performance is insensitive to structure and weights

A k l tWatch out for deadlock !!! Ask me later
Last deadlock took me 3 days to debug

1 4
35 252015_

_

_

_ _

3 5

2015

5 5

_

_

_

_

_

_ _ __

2 6
20

10

15
_ _

DataFlow flow

1 4
35 25

2015
_ ___

1

1

1

1__

3 5

2015

5

2015

5

_

_

_

_
_

_ _1

1

_

1

_

1
_

_ _

2 6
20

10

15 __ _ _

_ _

_
1

_

_ _

- Each node sets signal on its side of heaviest edge to 1

- Reads companion signal- Reads companion signal

DataFlow flow (cont.)

1 4
35 2520151

1

1

1__

1

1

1

100
0 01

1

1

100
0 0

3 5

2015

5 5

1

1

_

1

_

1
_

_ _1

1

0

1

0

1
_

1

1

0

1

0

0 0
0

2 6
20

10

15 _
1

_

_ _

_
1

_

_ _
1 0

1 1

- If companion signal is 1, then set signal of other edges to 0 and stop

- else set signal on next heaviest edge to 1- else set signal on next heaviest edge to 1

Performance

Graphz Clusters XMT Q XMT DF

Square Grid 230 230 15 2 s (IBM BG/L) 19 9 s 9 31

64 processors

Square Grid, 2 , 2 15.2 s (IBM BG/L) 19.9 s 9.31

US Roadmap 0.14 s (XT4) 0.5 s 0.11

RMAT, 227, 230, 227 X 5.8 s 2.12 s

RMAT, 227, 230, 23 X 8.0 s 2.12 s

When parallelism is intra-task

Store graph in shared memory
as accesses are non-local

Almost no computation per
access, so only direct loads
and stores are efficient

Synchronization points are
nodes

Triad Patterns Have Meaning

Transmission,
Transactions,Transactions,
Chain of Command

Close-Knit GroupsClose Knit Groups,
Strong Dependencies

Hierarchies

Bridges,
Points of Disruption

Subquadratic Triadic Analysis (Batagelj and Mrvar)

INPUT: G = (V, E)
OUTPUT: vector Census with frequencies of triadic types

1 for i := 1 to 16 do Census[i] := 0;

2 for each u  V do
2.1 for each v  Ê(u) do

collapse loops
“for all edges”

2.1.1 if u > v then continue;
2.1.2 S := Ê(u)  Ê(v) \ {v, u};
2.1.3 if uEv  vEu then TriType := 3 else TriType := 2;
2.1.4 Census[TriType] += (n − |S| − 2);

hil l i l l t th d2.1.4 for each w  S do
2.1.4.1 if v > w  !(u < w  w < v  ￢uÊw) continue;
2.1.4.2 TriType := Tricode(u,v,w);
2.1.4.3 Census[TriType] ++;

while loop is local to thread

3 sum := 0;
4 for i := 2 to 16 do sum := sum + Census[i];
5 Census[1] := (1/6)n(n − 1)(n − 2) − sum;

Computational complexity: O(n2) for sparse graphs
O(n3) for complete graphs

XMT code for while loop
#pragma mta dynamic schedule
for each edge (U, V) {

…
while ((VV < nNodes) || (UU < nNodes)) {

if (VV < UU) {
if (U < VV) {

int VWedge = EdgeType(V_neighbors, vv) // Read next edgetype of V
int code = (VWedge << 2) + VUedge;
int type = triad_table[code]; // Global read
census[type] ++; // Sync Global writecensus[type] ++; // Sync Global write

}
…
VV = (vv >= V_count) ? nNodes : NBR(V_neighbors, vv); // Read next neighbor of V

} else if (VV == UU) {} () {
if (U < VV) { // W is a neighbor of V, so clause 4 is false

int VWedge = EdgeType(V_neighbors, vv); // Read next edgetype of V
int UWedge = EdgeType(U_neighbors, uu); // Read next edgetype of U
int code = (UWedge << 4) + (VWedge << 2) + VUedge;
int type = triad_table[code]; // Global read
census[type] ++; // Sync Global write

}
…
VV = (vv >= V_count) ? nNodes : NBR(V_neighbors,vv); // Read next neighbor of V
UU = (uu >= U_count) ? nNodes : NBR(U_neighbors, uu); // Read next neighbor of U

} else {} else {
…

} } }

Optimizing thread reads

Threads often access remote data structures in order
V and U neighbor list
V and U edgetype list

Move multiple words when appropriate
Saves BW

Saves power

Reduces latency

Hardware? Compiler? Language?
CASS is developing cycle accurate simulator

CASS is investigating compiler and runtime system mods

When parallelism is inter-task

Store graph in shared memory as
accesses are non-local

Threads maintain private work space
Store in nearby memory

Coherency and synchronization hardware is
unnecessary

Contingency analysis for the Power Grid

Use BC to identify critical power transmission lines

High betweenness Low betweenness

Execute variation of Dijskstra’s shortest path algorithm for
ll i f dall pairs of nodes

Embarrassingly parallel, but tasks are irregular and use the whole
graphg p

Thread private data

Each thread maintains
Array of recordsArray of records
Heap of visited nodes
Previous node list

Data is thread private, so no need
… to store in global memoryg y
… to provide coherence
… to provide synchronization

Provide local memory for thread private data

Nearby memory on XMT

XMT has both global memory and nearby memory
Average latency to global memory is 740 clock cycles
Average latency to nearby memory is 90 clock cycles

MMAP() provides access to nearby memory

CASS is developingCASS is developing
APIs for managing nearby memory
Parallel-aware allocator for nearby memory
C fCompiler modifications to recognize thread private data structures

Performance gains

Western US WECC power gridWestern US WECC power grid
14,000 nodes,1,400 sources

Processors All Global Global/Nearby Improvement
2 28.69 s (29%) 16.69 s (47%) 1.72x
4 15 00 (27%) 8 85 (45%) 1 694 15.00 s (27%) 8.85 s (45%) 1.69x
8 7.93 s (26%) 4.69 s (43%) 1.69x

16 4.24 s (24%) 2.44 s (39%) 1.74x

UtilizationTime

Summary

The new HPC is irregular and sparse
Th i l d li iThere are commercial and consumer applications

If the applications are important enough, machines will be built

HPC is too large and too diverse for “one size fits all”

Develop hybrid computing systems and programmingDevelop hybrid computing systems and programming
models

