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Developing algorithms for massive
inference and learning problems:

Focus only on Algorithms —not architectures

Reducing computational complexity, enhancing
efficiency, accuracy

Full understanding that the architecture matters
Hope to discuss that with many of you this week
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e Statistical Learning with large data-sets
— Game Theory / Machine Learning approach to Climate Modeling
— Change Detection in Imagery / Large Scale Classification
— Wide area video monitoring

* Other large-data problems at LANL

e Path Forward and Cautionary Remarks
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Optimal Estimation: Problem Statement
(one of the few equations you’ll see here,
and really the only one you might want to pay attention
to...)

dx (1) = f(x(¢), )dt + 2D)"?(x, 1) AW (1)

X(7)) = Xyp.

y(tm) = h(x,,) + €,

Xs(1) =E[X()|y1, ..., Ym]



Standard Approach

Kalman/Bucy solved problems exactly for
linear systems, Gaussian noise, additive
Gaussian observation errors

Scales badly with system size

Ensemble Methods are popular— we’re taking
a different (complementary) approach
Embrace the data

— Use as much data as possible

— Use complex dynamical models if necessary



Sampling Histories

* |dea is to Map to the following form for
likelihood (not a new idea!)

P(of a given history)= exp(-A(history))/Z

 Sampling techniques are new



Algorithms for Sampling Histories

Multigrid Monte Carlo

Langevin

Fourier-Langevin

Hybrid Monte Carlo
Generalized Hybrid Monte Carlo
Adjoint Driven

Cluster Algorithms

Variational Methods



Inference on Graphs:
Graphical Models

CyberSystems

Biological Systems
Metabolic Networks
Protein Networks

Social Networks

Document Networks
Power Grid




Graphical Models

A graphical model is a multivariate probability distribution whose
definition is based on a graph G—nodes correspond to random variables
and edges represent influences among the variables.

The joint probability distribution P(x) is expressed in terms of potential
functions defined on the edges (or, more generally, cliques) of the graph:

P =~ [ slsx) = ch (xc)

{w}GG

It satisfies the Markov property with respect to separators of the graph:




Canonical Graphical Inference Problems

» Calculate partition function (high-dimensional sum/integral)
Z(4) = > ][ #elxo)
x C

» Calculate marginal distribution of each variable

P(s) = 5 3 [ welxo)

xyy C
» Find most-likely joint state (estimation/optimization)

& = arg max 1;[ Ye(xe)

Many applications in image processing, remote sensing, information
theory...

Optimal statistical inference in graphical models is generally
computationally intractable = need tractable approximations.



Belief Propagation

Message-passing algorithm that is exact in trees, but iterative and
approximate for loopy graphs. Defined by the “sum-product” rule:

Mfi}l)(é)—zfﬁ(ﬁa%) [T #2:00)

kEBiNj

It is interpreted as inference in the computation tree (universal cover) of
the graph (Weiss & Freeman)
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There is also a “max-product” form to solve discrete optimization
problems and Gaussian elimination form for Gaussian graphical models.



Most problems do not live on trees--
Belief Propagation is an approximation

» Combinatorial Methods

» loop-series analysis & correction of binary BP (Chertkov et al)

» orbit-product analysis & correction of Gaussian BP (Johnson et al)

» new approaches based on classical methods (Kac-Ward,
Fisher-Kasteleyn) using pfanar covers of a graph

» Variational Methods

» others have used tractable relaxations of Gibb's variational principle
(Yedidia, Wainwright, Globerson, Jaakkola)

» we are developing new methods exploiting monotonicity to obtain
upper-bounds from tractable (e.g. planar) sub-graphs.

» Multiscale Methods

» inspired by success of multiscale methods in linear algebra
(multigrid) and statistical physics (renormalization group)

» improve approximate inference by first reformulating problem in a
multi-scale way, and then apply the approximation (e.g., BP).

» developed generalization of Kadanoff's “bond moving” algorithm for
approximate inference in lattice models—reformulated as lattice
splitting method.



* Model Selection via Game Theory and
Machine Learning

* Change Detection in Imagery / Anomaly
Detection

e Wide Area Surveillance



Model Selection via Game Theory and Machine Learning

DATA SOURCES: OBSERVED & MODELED

Mean 276.101 Max 307.395 Min 231.051 Mean 284.312 Max 304.439 Min 225.236
90

180

Observed Forecast

» Consolidated interpolated “Observed Data” from January 1960 to present.
» Monthly data available from 24 model simulations.

» GOAL: use algorithms from machine learning to determine best forecast.

» Play unique game for each region in the world.



BACKGROUND:

GAME THEORETIC ESTIMATION

» Instead of selecting a linear combination of simulations that results in the minimal misfit of the
observed data with forecast data ( min|lv,-# 3o )" ) we optimize over regret.
» Regret,®; ; = how much better the algorithm would have done had it listened to i-th expert at time t.

Initially: Set R; o = 0,p; 1 = 1/N for each 3.
Fort=1,2,...
1. Each action 7 incurs loss £; ;.
2. Learner incurs loss £4 ; = 3" | p; 1 £;s.
3. Update cumulative regrets: R; ; = R; ;1 + ({44 — £; ;) for each 7.
4

. Find ¢¢ > 0 satisfying \ Zl\ 1 €Xp (':~“;2'(‘_;‘-":) = e.

5. Update distribution for round ¢ + 1: p; 4+ 'K‘L;"'-"' exp (“2( ') for each 1.

The Normal-Hedge Algorithm.
K. Chaudhuri, Y. Freund, and D. Hsu. A parameter free hedging algorithm. 2009.

» Regret of the algorithm bounded! R, ;= O(\/T InN +In’ N)



Raw Data

Region 7: Weights
Latitude = (0.0,90.0)
Longitude = (180.0,270.0)

Model

beer_ bem?2_0
cccma_cgem3_1

ccecma_cgem3_1_t63

cnrm_cm3
csiro_ mk3 0

csiro_ mk3 5

giss_aom - runl
giss_aom - run2
giss_model_e_h
giss_model_e_r
iap_fgoalsl_0_g - runl
iap_fgoalsl_0_g - run2
iap_fgoalsl_0_g - run3
inmcm3_0

ipsl_cm4
mibu_echo_g
mri_cgem2_3_2a
ukmo_hadcm3
ukmo_hadgem]1

Organization
BCCR, Norway

Canadian Center for Climate Modeling
Canadian Center for Climate Modelling

Centr. of Meteorological Research,
France

CSIRO, Atmospheric Research,
Australia

CSIRO, Atmospheric Research,
Australia

NASA, Goddard

NASA, Goddard

NASA, Goddard

NASA, Goddard

Institute of Atmospheric Physics, China
Institute of Atmospheric Physics, China
Institute of Atmospheric Physics, China
Inst. for Numerical Mathematics, Russia
IPSL, France

Many Groups, Germany /Korea
Meteorological Research Inst., Japan
Hadley Centre, Met. Office, UK

Hadley Centre, Met. Office, UK
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Raw Data

Region 7: Visualization
Latitude = (0.0,90.0)
Longitude = (180.0,270.0)

Truth csiro_mk3_0 Estimate

max: 301.438 max: 299.723

mean: 283.448 mean: 279.981
min: 237.172 min: 225.869



Raw Data

Region 7: Visualization
Latitude = (0.0,90.0)
Longitude = (180.0,270.0)

Truth GT Reconstruction (11yr.)

max: 301.438 max: 301.318
mean: 283.448 mean: 283.659
min: 237.172 min: 236.252



Model

bcer_ bem?2 0

ccema_cgem3_1

ccema_cgem3_1_t63

cnrm_cm3
csiro mk3 0

csiro mk3 5

giss_aom - runl
giss_aom - run2
giss_model_e_h

giss_model_e_r

iap_fgoalsl_0_g - runl
iap_fgoalsl_0_g - run2
iap_fgoalsl_0_g - run3

inmecm3 0
ipsl_cm4
mibu_echo_g
mri_cgem?2_3_2a
ukmo_hadem3

ukmo_hadgem1

Organization
BCCR, Norway

Canadian Center for Climate Modeling
Canadian Center for Climate Modeling

Centr. of Meteorological Research,
France

CSIRO, Atmospheric Research,
Australia

CSIRO, Atmospheric Research,
Australia

NASA, Goddard

NASA, Goddard

NASA, Goddard

NASA, Goddard

Institute of Atmospheric Physics, China
Institute of Atmospheric Physics, China
Institute of Atmospheric Physics, China
Inst. for Numerical Mathematics, Russia
IPSL, France

Many Groups, Germany /Korea
Meteorological Research Inst., Japan
Hadley Centre, Met. Office, UK

Hadley Centre, Met. Office, UK
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Change Detection in Large Sets of Images
What is interesting?

e Analysts face a glut of imagery

» Sometimes tasks are well defined
— How many houses?
— Are the roads passable?

— Will this be a good year for
soybeans?
— Where are the golf courses?

* Some questions more open-ended
— Is there any illegal activity?
— Is there anything unusual?
— What is interesting?

QUIckblrd 26 March 2006
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What has changed?

Quickbird, 26 March 2(_)_06 _
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“Just because everything is different doesn’t mean anything has changed.”
-- Irene Peter




What is the interesting change? Developing
new tools to answer this question

Ikonos 23 May 2000 Quickbird, 26 March 2006
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“Just because everything is different doesn’t mean anything has changed.”
-- Irene Peter




Large Volume Data Exploitation Tool Chains

1% Generation Tools Directed Exploitation
Select high value subsets (Sma.ll.data v?lume) _
of the data - Specific queries Validated

- Specialized filters Information
(identified by other sensors, - Specialized visualization

people or prior knowledge)

2" Generation Tools

Open Exploration
(Large data volume)

(all the data plus historical - Fuzzy queries
data, auxiliary data, additional - Flexible filters

sensors etc.) - Flexible visualization.

All the data you can get




Scenario Extraction
2"d Generation Tools for Wide Area Motion Imagery

Wide-Area Motion Imagery
* 0.5 meters / pixel

* 0.5 seconds / frame
* 36 km? for 1-2 hours

ATIME

Scenario Extraction
Detecting and understanding the
relationship between otherwise
innocuous events in a complex
urban scene

A
‘Scenarios
O delivery rendezvous ©
Activities surveillance
Orevist  ©meeting -
Events ©® brush past
vehicle IED ©
movement emplacenjent
vehicle ngrdinatql
o stop driving PN

>
ASPACE



Activity Tool Use Example

1. Query

Meetings Vehicle Coordinated

2 vehicle meeting

|3 vehicle meeting

[ Only search apix ROI

2. Inspect

3 vehicle meeting

4 vehicle meeting k

v Edit

Number of Vehicles:

Group meeting
Add new preset

E! | to [3

Interaction distance:

|50 m

~]

|150 S

Observed:
@ Complete < Include partial
Prioritize by: Wieight

|Probability At Location ﬂ@

O

|No Priority e
INo Priority Proballlty At Location
Duratic
Direction
No Priority
Num Results:[20 '
Perform Query |
C D

3 Triage

Current ROI

Rank:[1120

Type: |3 vehicle meeting

s |9823.?2285 Y |2892.8718 T |3975.0000

Info:
|A2( 3975 3940) D3( 7484 7556 7579)

Motes:

|
K| <] & || |

Save ‘ Delete ’

Delete all in view |

Displa
Tracks: —

Single| Arriva|| Departurel

Left:
Right:

® ROIs < Summary
vV ROIs on right

Query

Export | User ROI |

Import | Recover |

GeoCorrect | Options |




User Efficiency Improvement— 90m|ns versus 180hrs
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Towards Scenarios — Connecting Activities

- Query to find associated activities.

Predicted” °
Link ~ : Oy X Confirmed Example query result - potential link (60%)
; SR \ «Meeting ;

Staging
area

Coordinated Ac'tivity"‘ “ '

4 ¥y

Predicted
Assocliatior)‘v

Tipoff RN, .
: _”-":Poi;entialt‘_. '

User cues : confirm / deny



Other Large-Scale Data Problems at LANL



Quantifying Molecular Dynamics Studies with IS&T Tools

K. Kadau et al., Phys. Rev. Lett. (2006).

Shock-induced transformation in Fe predicted by
large-scale molecular-dynamics simulations

Bce(8nn, gray)->comp Bcc (10nn, blue)->hcp,fcc
(12nn, red,green): simple algorithm

NEMD results confirmed experimentally by ultrafast
(nanosecond) X-ray diffraction (shocks and high intensity
X-rays produced by high energy laser systems OMEGA
/Janus/Vulcan)

D.H. Kalantar et al., Phys. Rev. Lett. (2005).

Massive MD studies (SPaSM on Roadrunner): Trillions
of atoms = several cubic microns

Tool to characterize sensitivity to polycrystalline
morphology, realistic defect concentrations

However, massive data sets with limited storage
capacity (1:1000 snapshots)

Identify “interesting” events in real time and save
additional information in those areas: machine learning
for anomaly detection and classification

More quantitative description of local geometry in terms
of spherical harmonic expansions, enhanced
classification of geometries

Group into classes of response behavior: phase
transitions, slip planes, dislocation loops

Dominant modes for reduced order modeling: basis
vectors for higher level models (e.g. plastic flow). What
are the associated thermodynamic properties?

Sensitivity of results to the form and parameters of
chosen potential functions.

Comparison and iteration with experimental results:
diffraction, OIM Kober, Barber, Steinwart



» Los Alamos

LANL’s Thinking Telescopes:

Autonomous, Real-Time, Robotic SSA Surveillance and
Interrogation

\ ; Conte
: : , Databa
A Y “« | ﬂaa‘:.:} E Intensity Profile
¥ | B
38 km )
Baseline Unusual Object Iy N
Detected &

Anomaly Detection

Wide Field

Monitoring Timeline
T =0s Object Detected T =+ 27 s Object re-analyzed T = +42 s SOl Image taken

I
| 10s >1 125> 5s >1 10s >1 12s 5s >| 10s >
Monitor > Analyz% Slew> Interrogate > Analyz% Slew> Interrogate >

Parallax

4"

Color imaging, SOI

Data Fusion

Higher Resolution
Parallax

Tl= -22's

NATIONAL LABORATORY

EST.1943

Operated by the Los Alamos National Security, LLC for the DOE/NNSA
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PANN Petascale Artificial Neural Network

WHERE” PATHWAY = Neocognitron/HMAX-type
hierarchical feed-forward model
of visual cortex “what” (ventral) pathway
(V1/V2/IT).

= High performance parallel code using
MPI, vector intrinsics, and Cell
Broadband Engine.

= (Can take as input any image format
supported by open source GDAL library,
or video format supported by open
source FFMPEG library.

= On a cluster of 20 Opteron cores each
with a dedicated Cell card (5 tri-blades),
PANN processes “YouTube”-quality

*RBF :“I‘.II bl ‘.:‘Iﬂ \ J . \ . . . .

S-cell ivg cenit. . IR (200x200 pix) video in real time (> 20
*MAX e i

Ccell ia i\ fpS)
*Hebbian *Hebbian !
Learning ‘kedrning

= PJ: Luis Bettencourt, T-5.
http://synthetic-cognition.lanl.gov/




Animal / No animal binary classification task



Data Intensive Computing:
Structural Health Monitoring

Structural Health Monitoring is the process of developing a damage assessment capability
for aerospace, civil and mechanical infrastructure
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Most Applications Generate Lots of Data

Rotating Machinery
— 100’s of machines per plant

Rotocraft Health and Usage
Monitoring Systems (HUMS) :

— 40 gbytes of data/hr of flight

Civil Engineering Infrastructure
requires 1000’s of sensors




SHM requires coupling between data & computationally
intensive modeling

 The “Grand Challenge” for engineers in the 215t century: using
SHM system state assessments as initial conditions to
predictions of remaining system life
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Time Scale of Damage Evolution Poses Challenges

* Longterm SHM, periodically updates
information regardmg aging and degradation
resulting from operational environments.

— Maintenance staff continuity

— Data archiving and retrieval

— Maintenance vs construction budgets
— Sensor endurance and evolution

* Rapid condition screening in near real time
after extreme events, such as earthquakes or
blast loading.

— Robust sensing and processing hardware
— Provide information to first-responders

— Consequences of misdiagnosis are severe
— Must be integrated with control systems




Cautionary Remarks

* Getting tons of data can be good but

— Many “mundane” problems still left to
solve (e.g., small sample size problem)

— Shouldn’t be enamored by just being able
to measure more / simulate more

— Make sure resources are devoted to
turning data into knowledge (algorithms
/theory/modeling )



Path Forward

Numerous challenges

Need for more accurate/faster

*methods for inference on graphs

Filters/smoothers for nonlinear problems

Anomaly detection algorithms (possibly single pass)
Classification algorithms to deal with petabytes of data
*Optimal (or close to optimal) design of integrated HW/
SW/Algorithms systems to solve targeted problem



Thank You!



