
Killer Micros II:
The Software Strikes Back

Burton Smith
Technical Fellow

Developer Productivity Luncheon, November 15, 2007

Burton Smith
TECHNICAL FELLOW

EXTREME COMPUTING GROUP
MICROSOFT RESEARCH



HPC Software is Primitive
• HPC programming is too low-level

– C++, OpenMP, and MPI

• HPC tools are few and thinly supported
– The market just isn’t big enough

• HPC applications are too narrowly applicable
– Assume ample statically mapped data parallelism

• HPC operating systems are stripped down
– Resource management, communications, services

2



Changes Are Afoot
• The many-core inflection

– Many processor cores in each socket

– Parallel computing is becoming mainstream

• Heterogeneous processors
– Able to do more than just graphics

– High performance and low power consumption

• Cloud computing
– Better data search and access

– Service-based application software

3



Client Parallelism
• Client computing is becoming parallel

– Even on mobile devices

• There are two reasons:
– Continued performance improvement

– Reasonable power/energy efficiency

• Parallel languages and tools are emerging
– They are needed to use the new hardware well

4



The Attack of the Killer Micros

At Supercomputing ’89, 
Eugene Brooks predicted 
mainstream hardware would 
dominate the HPC arena:

“No one will survive the 
attack of the killer micros!”

Now it’s the software’s turn.

http://www.archive.org/details/Parallel1986?start=419.5�


Some Consequences

Traditional Cluster Software
• SPMD (OpenMP) on nodes
• Static node and core counts
• Static load balancing
• MPI
• C++, Fortran
• File system storage

Emerging Mainstream Software
• Mixed parallelism on nodes
• Adaptive node and core counts
• Dynamic load balancing
• MPI, WCF, HTTP, XML…
• C++, F#, Excel, PLINQ, Dryad…
• File systems, databases, clouds

6

Mainstream software will have far richer capabilities 

HPC software will derive from the mainstream



Shared Memory vs. Message Passing

• The two concepts are complementary
– Shared memory enables concurrent access to 

state, whereas message passing is functional

• It is important they work very well together

• Unfortunately, in traditional HPC they don’t
– MPI calls are relegated to serial code regions

– OpenMP is the main culprit

• PPL, TPL and Intel’s TBB are much better
– General task graphs with dynamic task scheduling

5/11/2010 7



Dynamic Task Scheduling
• The pros:

– Automatically balances the computing load

– Lets software use any number of cores

– Helps tame asymmetric cores

• The cons:
– Overhead

– Progress guarantees (e.g. priority inversions)

• User-Mode Scheduling addresses the cons 

5/11/2010 8



User-Mode Scheduling
• Basic idea: don’t use the OS to block/unblock

• It has a long history, usually not well-reported
– E.g. http://en.wikipedia.org/wiki/Thread

• Win7’s UMS + Dev10’s ConcRT implements it

• Why block/unblock in user mode?
– To make it very inexpensive

– To let applications manage affinity

– To provide full observability of state

– To enable more sophisticated synchronization

5/11/2010 9

http://en.wikipedia.org/wiki/Thread�


Non-Blocking
• Non-blocking synchronization was invented to 

improve parallel computing on kernel threads
– E.g. to pull the fangs of priority inversions

• The bad news:
– Mutual exclusion becomes intrinsically optimistic

– Complex state mutation becomes even more complex

– Message passing and I/O become asynchronous 
operations from the programmer’s point of view

– Exception handling is still more daunting to “get right”

• Both control flow and data flow become tangled

5/11/2010 10



Execution

Application

Data-Parallel Computation

11

Storage

Language

Parallel
Databases

Map-
Reduce

GFS
BigTable

Cosmos
Azure

SQL Server

Dryad

DryadLINQ
Scope

Sawzall

Hadoop

HDFS
S3

Pig, Hive
SQL ≈SQL LINQ, SQLSawzall

Cosmos, 
HPC, Azure

http://connect.microsoft.com/Dryad

http://connect.microsoft.com/Dryad�


Heterogeneous Computing
• Our GPU partners all want similar things:

– Ability to use GPUs in multiple roles concurrently

– Shared virtual memory among CPUs and GPUs

– Fast synchronization among CPUs and GPUs

• Shared memory is great for synchronization
– User mode blocking/unblocking can schedule the 

unblocked continuations to the appropriate ISA

– I/O, e.g. messaging, can also be handled this way

– Interrupts can be limited to “dumb” devices

5/11/2010 12



Resource Management
• User-mode scheduling allocates cores (or HW 

threads), not kernel threads, to processes
– This makes cores much more like other resources: 

memory, various bandwidths, etc.
– Processes ask for (and sometimes yield) resources
– The OS arbitrates among the competing processes

• A key question: what is the policy machinery?
– I think I have a handle on this for the client case
– It will vary between clients and servers, e.g. HPC
– One common theme is the need to provision SLAs

5/11/2010 13



Service-Level Agreements
• In clients, some applications need a minimum 

resource quota from the OS to work properly
– They are called Quality Of Service (QOS) apps
– QOS apps have a Service Level Agreement (SLA) 

that the app must meet, e.g. output per frame at 
some frame rate, to keep the app’s user happy

• SLAs are standard fixtures in cloud computing
– Communicating services need to have an SLA

• I believe a solution for the SLA provisioning 
problem is in reach, even for client systems

5/11/2010 14



Service Oriented Architecture
• We want applications composed from services

– So services can be near(er) data, cycles, or energy

– So services can be relocated as needed

• This concept has interesting implications
– Clients and servers should have the same APIs

– Inter-process message passing should be unified 

– All services ask for resources to support their SLAs

• Clients and servers start to look a lot alike

• That’s why MS Technical Computing has both

5/11/2010 15



Non-Blocking Is Non-Necessary
• User mode scheduling makes blocking work

– High contention on mutual exclusion isn’t fatal
– Complex state mutations don’t have to distill 

everything into a single hardware operation
– Message passing and I/O stay synchronous to the 

programmer (but asynchronous in the runtime)
– Exception handling can await outcomes, whether 

from message receipt or state modification

• Its result is more productive programming
• It also helps clean up a few other problems

5/11/2010 16



SOA Inside HPC Systems
• The idea is to compose applications as parallel 

workflows within HPC systems
– Distributed file systems resemble this vision

– HPC applications become service pipelines

– Data locality is improved over storage-based flows

• Techniques used for client OS can help
– Load balancing is a crucial function

– If services can run anywhere, just balance SLAs

5/11/2010 17



HaaS: HPC as a Service
• SOA allows seamless use of HPC as a Service

– For smallish problems, the app runs on a client

– For big ones, a part of the app stays home and the 
rest moves to an HPC system

• HaaS in the cloud would be useful 
– Dedicated corporate HPC might be unnecessary

– Even HPC in home clouds might be worthwhile

5/11/2010 18



Conclusions
• HPC software is pretty primitive, chiefly 

because the market is small

• Major computing revolutions now underway 
will change the HPC landscape

• Mainstream software will take over HPC

• Client, HPC and Cloud software will converge

• Technical Computing will benefit from all this

19


	Killer Micros II:�The Software Strikes Back
	HPC Software is Primitive
	Changes Are Afoot
	Client Parallelism
	The Attack of the Killer Micros
	Some Consequences
	Shared Memory vs. Message Passing
	Dynamic Task Scheduling
	User-Mode Scheduling
	Non-Blocking
	Data-Parallel Computation
	Heterogeneous Computing
	Resource Management
	Service-Level Agreements
	Service Oriented Architecture
	Non-Blocking Is Non-Necessary
	SOA Inside HPC Systems
	HaaS: HPC as a Service
	Conclusions

