KILLER MICROS II:
THE SOFTWARE STRIKES BACK

BURTON SMITH
TECHNICAL FELLOW
EXTREME COMPUTING GROUP
MICROSOFT RESEARCH

HPC Software is Primitive

HPC programming is too low-level
— C++, OpenMP, and MPI

HPC tools are few and thinly supported

— The market just isn’t big enough

HPC applications are too narrowly applicable

— Assume ample statically mapped data parallelism

HPC operating systems are stripped down

— Resource management, communications, services

Changes Are Afoot

* The many-core inflection

— Many processor cores in each socket

— Parallel computing is becoming mainstream
¢ Heterogeneous Processors

— Able to do more than just graphics

— High performance and low power consumption
 Cloud computing

— Better data search and access
— Service-based application software

Client Parallelism

e Client computing is becoming parallel

— Even on mobile devices

e There are two reasons:
— Continued performance improvement

— Reasonable power/energy efficiency

e Parallel languages and tools are emerging

— They are needed to use the new hardware well

The Attack of the Killer Micros
At Supercomputing '89, f
Eugene Brooks predicted ¥ i<q
mainstream hardware would
dominate the HPC arena:

“No one will sUrVive the
attack of the killer micros!”

Now It's the software’s turn. EEEEClUE=S

Microsoft

http://www.archive.org/details/Parallel1986?start=419.5�

Some Consequences

Traditional Cluster Software Emerging Mainstream Software
SPMD (OpenMP) on nodes Mixed parallelism on nodes
Static node and core counts Adaptive node and core counts

Static load balancing e Dynamic load balancing

MPI e MPI, WCF, HTTP, XML...

C++, Fortran e C++, F#, Excel, PLINQ, Dryad...
File system storage * File systems, databases, clouds

Mainstream software will have far richer capabilities

HPC software will derive from the mainstream

Shared Memory vs. Message Passing

e The two concepts are complementary

— Shared memory enables concurrent access to
state, whereas message passing is functional

e [tisimportant they work very well together
e Unfortunately, in traditional HPC they don’t

— MPI calls are relegated to serial code regions
— OpenMP is the main culprit

* PPL, TPL and Intel’s TBB are much better

— General task graphs with dynamic task scheduling

Microsoft

Dynamic Task Scheduling
 The pros:

— Automatically balances the computing load
— Lets software use any number of cores
— Helps tame asymmetric cores
 The cons:
— Overhead

— Progress guarantees (e.g. priority inversions)

e User-Mode Scheduling addresses the cons

User-Mode Scheduling

Basic idea: don’t use the OS to block/unblock

It has a long history, usually not well-reported
— E.g. http://en.wikipedia.org/wiki/Thread
Win7’s UMS + Dev10’s ConcRT implements it

Why block/unblock in user mode?

— To make it very inexpensive

— To let applications manage affinity

— To provide full observability of state

— To enable more sophisticated synchronization

:
Microsoft

http://en.wikipedia.org/wiki/Thread�

Non-Blocking

* Non-blocking synchronization was invented to
improve parallel computing on kernel threads

— E.g. to pull the fangs of priority inversions
e The bad news:
— Mutual exclusion becomes intrinsically optimistic

— Complex state mutation becomes even more complex

— Message passing and |/O become asynchronous
operations from the programmer’s point of view

— Exception handling is still more daunting to “get right”

 Both control flow and data flow become tangled

Data-Parallel Computation

Application
_SQL __Sawzall _ =SQL __LIN L
(_ Sawzall)(Pig, Hive)|DryadLINQ
Language r 2Ya 3
Scope
hlass Had Dryad
adoo
Execution Parallel Reduce P Cosmos
Databases \. J\ Z\ HPC, Azu’re f
" GFs || HDEs || COSMOS
Storage Azure
BieTable S3
- J___ J\ J\SQL Server)

http://connect.microsoft.com/Dryad

http://connect.microsoft.com/Dryad�

Heterogeneous Computing

e Our GPU partners all want similar things:
— Ability to use GPUs in multiple roles concurrently
— Shared virtual memory among CPUs and GPUs
— Fast synchronization among CPUs and GPUs

 Shared memory is great for synchronization

— User mode blocking/unblocking can schedule the
unblocked continuations to the appropriate ISA

—1/0, e.g. messaging, can also be handled this way
— Interrupts can be limited to “dumb” devices

Resource Management

 User-mode scheduling allocates cores (or HW
threads), not kernel threads, to processes

— This makes cores much more like other resources:
memory, various bandwidths, etc.

— Processes ask for (and sometimes yield) resources
— The OS arbitrates among the competing processes

* A key question: what is the policy machinery?
— | think I have a handle on this for the client case
— It will vary between clients and servers, e.g. HPC
— One common theme is the need to provision SLAs

Service-Level Agreements

* In clients, some applications need a minimum
resource quota from the OS to work properly

— They are called Quality Of Service (QOS) apps

— QOS apps have a Service Level Agreement (SLA)
that the app must meet, e.g. output per frame at
some frame rate, to keep the app’s user happy

e SLAs are standard fixtures in cloud computing
— Communicating services need to have an SLA

e | believe a solution for the SLA provisioning
problem is in reach, even for client systems

Service Oriented Architecture

We want applications composed from services
— So services can be near(er) data, cycles, or energy
— So services can be relocated as needed

This concept has interesting implications

— Clients and servers should have the same APIs

— Inter-process message passing should be unified
— All services ask for resources to support their SLAs

Clients and servers start to look a lot alike
That’s why MS Technical Computing has both

Micresoft

Non-Blocking Is Non-Necessary

e User mode scheduling makes blocking work
— High contention on mutual exclusion isn’t fatal

— Complex state mutations don’t have to distill
everything into a single hardware operation

— Message passing and 1/O stay synchronous to the
programmer (but asynchronous in the runtime)

— Exception handling can await outcomes, whether
from message receipt or state modification

* [ts result is more productive programming
e |t also helps clean up a few other problems

SOA Inside HPC Systems

 The idea is to compose applications as parallel
workflows within HPC systems

— Distributed file systems resemble this vision
— HPC applications become service pipelines
— Data locality is improved over storage-based flows

 Techniques used for client OS can help
— Load balancing is a crucial function
— If services can run anywhere, just balance SLAs

HaaS: HPC as a Service

e SOA allows seamless use of HPC as a Service
— For smallish problems, the app runs on a client

— For big ones, a part of the app stays home and the
rest moves to an HPC system

 HaaS in the cloud would be useful
— Dedicated corporate HPC might be unnecessary
— Even HPC in home clouds might be worthwhile

Conclusions

HPC software is pretty primitive, chiefly
because the market is small

Major computing revolutions now underway
will change the HPC landscape

Mainstream software will take over HPC
Client, HPC and Cloud software will converge
Technical Computing will benefit from all this

	Killer Micros II:�The Software Strikes Back
	HPC Software is Primitive
	Changes Are Afoot
	Client Parallelism
	The Attack of the Killer Micros
	Some Consequences
	Shared Memory vs. Message Passing
	Dynamic Task Scheduling
	User-Mode Scheduling
	Non-Blocking
	Data-Parallel Computation
	Heterogeneous Computing
	Resource Management
	Service-Level Agreements
	Service Oriented Architecture
	Non-Blocking Is Non-Necessary
	SOA Inside HPC Systems
	HaaS: HPC as a Service
	Conclusions

