
Salishan conference, April 2009

Impacts of Energy Efficiency
on Supercomputer
Programming Models

Craig Stunkel, IBM Research

IBM Research

What is a programming model?What is a programming model?

A programming model is a May be realized through one orA programming model is a
story
– A common conceptual

framework
– Used by application

May be realized through one or
more of:

• Libraries
• Language/compiler

extensions – pragmas, – Used by application
developers, algorithm
designers, compiler-writers,
runtime developers, tool
builders to communicate with

p g
directives

• New languages
Different programming models
may exist at different levels of

b t tieach other and write code.
– A good programming model is

a robust story
• Makes sense to all stake-

abstraction
A good programming model
can lead to new industry-wide
eco-systems

holders
• Meets a critical need

– E.g. Java, Map-Reduce, …

April 2009Programming models, Salishan conference2

Slide courtesy of Vijay Saraswat

IBM Research

Desirable programming model characteristicsDesirable programming model characteristics

Realizable in existing tool Should support source levelRealizable in existing tool-
chains (C, Fortran, Java,
OpenMP, scripting languages)
with minimal changes

Should support source-level
performance debugging (tools)
Should provide smooth
performance vs effort graph

– E.g. addition of a few directives
– Single source code
Should be performance

p g p
– With low startup cost
Should mesh well with scale-
out programming model

portable across architectures
Should cover a sweet spot of
applications

– Ideal: single unified
programming model from
accelerators to clusters

– i.e. do really well on targeted
workloads on targeted
architectures

April 2009Programming models, Salishan conference3

Adapted from Vijay Saraswat

IBM Research

Programming modelsg g

Applications

Programming Models

System Hardware and Software

April 2009Programming models, Salishan conference4

IBM Research

Microprocessor Clock Speed Trends

1.0E+04104

Managing power dissipation is limiting clock speed increases
M

H
z)

2004 Frequency Extrapolation

1.0E+03

pe
ed

 (M

103

lo
ck

 S
p

1.0E+02

C
l

102

April 2009Programming models, Salishan conference5

1990 1995 2000 2005 2010

IBM Research

Microprocessor Transistor Trend

1.0E+101010

Moore’s (original) Law alive: transistors still increasing exponentially

1.0E+09

si
st

or
s

109 1 Billion

1.0E+08

of
 T

ra
ns 108

7

~50% CAGR

1.0E+06

1.0E+07

um
be

r o

106

107

1 Million

1.0E+05

1.0E 06

N
u 10

105

April 2009Programming models, Salishan conference6

1980 1985 1990 1995 2000 2005 2010

IBM Research

Hardware trends that address the power problem

Trend #1: Multicore processor chips

p p

– Maintain (or even reduce) frequency while replicating
cores

Trend #2: Accelerators
– Previously, processors would “catch” up with

accelerator function in the next generationaccelerator function in the next generation
• Accelerator design expense not amortized well

– New accelerator designs more likely to maintain
performance advantage

• And will maintain an enormous power advantage for
target workloads

April 2009Programming models, Salishan conference7

IBM Research

The IBM PowerXCell 8i ProcessorThe IBM PowerXCell 8i Processor

Implementation of CellImplementation of Cell
Broadband Engine
Architecture
F ll i li d d bl

D

Fully pipelined double
precision FP
DDR2 SDRAM support Enhanced DP-Float

D
D

R
2 C

o

– Up to 16 GB / chip
Speeds & Feeds

– 108 8 DP FLOPS
ontroller

108.8 DP FLOPS
– 217.6 SP FLOPS
– 25.6 GB/s mem B/W

April 2009Programming models, Salishan conference8

IBM Research

Hardware trends that address the power problem

Trend #2b: Heterogeneous multicore in general

p p

– Mixes of powerful cores, smaller cores, and accelerators
potentially offer the most efficient nodes

– The challenge is harnessing them efficiently

April 2009Programming models, Salishan conference9

See “Amdahl’s Law in the Multicore Era” by Mark Hill

IBM Research

Other hardware trends

Tighter integration of memory
– Improves both power and performance
– But storage is growing further away

Integration of optics
– Improves both power and bandwidth

Intrinsically less reliable
M t tt k i ltit d f t h i– Must attack via a multitude of techniques

• May also affect programs and programming models

April 2009Programming models, Salishan conference10

IBM Research

Programming issuesProgramming issues

Many cores per node, and accelerators/heterogeneity
Future performance gains will come via parallelism (not
clock speed)
– An unwelcome situation for HPC apps!pp

Need new programming models to exploit

At the system/cluster level:
– Message-passing to connect node-level languages, or
– Global addressing to make communication implicit?

April 2009Programming models, Salishan conference11

IBM Research

OpenCLOpenCL

New open standard that specifically addresses parallelNew open standard that specifically addresses parallel
compute accelerators
Extension to C
Provides data parallel and task parallel modelsProvides data parallel and task parallel models
Facilitates natural transition from the growing number of
(proprietary) CUDA programs
Porting of Cell applications to a standard modelPorting of Cell applications to a standard model
Play wells with MPI
– MPI on the host for inter-node communication
Can interoperate with Fortran and OpenMP on the “host”

April 2009Programming models, Salishan conference12

IBM Research

OpenCLOpenCL

Kernel program runs on the acceleratorKernel program runs on the accelerator

Example kernel for vector add (c[*] = a[*] + b[*]):

__kernel void vec_add(__global const float *a,
__global const float *b,
__global const float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

April 2009Programming models, Salishan conference13

IBM Research

Partitioned Global Address Space (PGAS)p ()
Address SpaceProcess/Thread Accelerator Address Space

..
Accelerator Thread

Shared Memory
pThreads, OpenMP, Java

PGAS (UPC, CAF, Titanium)
X10, Chapel, Fortress

Message passing
MPI

Computation is performed in multiple
places.
A place contains data that can be
operated on remotely.
D t li i th l it t d

A datum in one place may reference a datum
in another place.
Data-structures (e.g. arrays) may be
distributed across many places.
Places may have different computational

April 2009Programming models, Salishan conference14

Data lives in the place it was created,
for its lifetime.

Places may have different computational
properties

IBM Research

Different approaches to exploit parallelismDifferent approaches to exploit parallelism
Advanced
compiler

techniques

Enhanced by
directives (e.g.
Transactional

No change to
t d

Rewrite
program

techniques
Memory)

Programming Intrusiveness

customer code

Traditional & ParallelDi ti

Parallel
languages

Single-thread
program

Annotated
program

Compiler Innovations

Traditional &
Auto-Parallelizing

Compilers

Parallel
Language
Compiler

Directives +
Compiler

Accelerators/
Heterogeneity

Speculative
threads Multicore / SMPClusters

April 2009Programming models, Salishan conference15

Hardware Innovations

IBM Research

Different approaches to exploit parallelismDifferent approaches to exploit parallelism
OpenMP

OpenMP with
extensions?

No change to
t d

Rewrite
program

extensions?

Programming Intrusiveness

customer code

Traditional & ParallelDi ti

Parallel
languages

Single-thread
program

Annotated
program

Compiler Innovations

Traditional &
Auto-Parallelizing

Compilers

Parallel
Language
Compiler

Directives +
Compiler

Accelerators/
Heterogeneity

Speculative
threads Multicore / SMPClusters

April 2009Programming models, Salishan conference16

Hardware Innovations

IBM Research

Different approaches to exploit parallelismDifferent approaches to exploit parallelism

OpenCL

No change to
t d

Rewrite
program

Programming Intrusiveness

customer code

Traditional & ParallelDi ti

Parallel
languages

Single-thread
program

Annotated
program

Compiler Innovations

Traditional &
Auto-Parallelizing

Compilers

Parallel
Language
Compiler

Directives +
Compiler

Accelerators/
Heterogeneity

Speculative
threads Multicore / SMPClusters

April 2009Programming models, Salishan conference17

Hardware Innovations

IBM Research

Different approaches to exploit parallelismDifferent approaches to exploit parallelism
PGAS/APGAS

languages
APGAS annotations

for existing
languages

No change to
t d

Rewrite
program

languages

Programming Intrusiveness

customer code

Traditional & ParallelDi ti

Parallel
languages

Single-thread
program

Annotated
program

Compiler Innovations

Traditional &
Auto-Parallelizing

Compilers

Parallel
Language
Compiler

Directives +
Compiler

Accelerators/
Heterogeneity

Speculative
threads Multicore / SMPClusters

April 2009Programming models, Salishan conference18

Hardware Innovations

IBM Research

Potential Migration Paths
Green: open, widely available*
Blue: somewhere in between
Red: proprietary

Base and MPIC/C++/Fortran/Java (Base)

Red: proprietary

*OpenCL availability predicted

Base/OpenMP and MPI

Base/OpenMP

Clusters
Charm++

PGAS/
APGAS

es
s

ac
ce

le
ra

to
rs

w/ AcceleratorsBase/OpenCL

Base/OpenMP+ and MPI

RapidMind

Base/OpenCL and MPI

H
ar

ne

w/ Accelerators

CUDA

Base/OpenCL

libspe

GEDAE/Streaming models

ALF

April 2009Programming models, Salishan conference19

CUDA libspe

IBM Research

Programming model perspectiveProgramming model perspective

There will be a variety of programming models
– No silver bullet
– Must extend dominant legacy tool chains

• Compilers, performance tools, …

In particular, the industry should explore:
– OpenMP and potential extensions for hybridp p y
– OpenCL (for compute accelerators)
– PGAS and APGAS languages (UPC, CAF, X10, …)
– Pursue APGAS directives for current languagesPursue APGAS directives for current languages

• C/C++, Fortran, Java

April 2009Programming models, Salishan conference20

IBM Research

EducationEducation

Producing scaling codes will be a challenge

Too few software engineers understand how to take
advantage of parallelism, particularly data parallelismg p p y p
– Continuation of the multicore revolution is at stake
– And supercomputers are now dependent upon multicore

How to change this?
– Update skills through internal and industry courses
– Introduce parallelism and concurrency early in

undergraduate programs
• But how early (First course? Junior year?)

April 2009Programming models, Salishan conference21

But how early (First course? Junior year?)

IBM Research

Concluding thoughtsConcluding thoughts

Multicore and heterogeneous nodes attack energy efficiency

However, they introduce new programming challenges
– Virtually all performance gains will be due to parallelism– Virtually all performance gains will be due to parallelism

New programming models and/or languages will be required
– There is no silver bullet!
– Adoption of new models will take time
– Evolutionary approaches will likely prevailEvolutionary approaches will likely prevail

It is time to seriously invest in PGAS

April 2009Programming models, Salishan conference22

IBM Research

Questions?Questions?

April 2009Programming models, Salishan conference23

