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Outline

Exascale performance goals

Major challenges

Potential solutions

Paradigm shift

Summary
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Performance Roadmap
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From Giga to Exa, via Tera & Peta
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Building with Today’s Technology
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The Power & Energy Challenge
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Starting Point: Optimistic yet Realistic
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Scaling Assumptions

Technology

(High Volume)

45nm 

(2008)

32nm 

(2010)

22nm 

(2012)

16nm 

(2014)

11nm 

(2016)

8nm 

(2018)

5nm 

(2020)

Transistor density 1.75 1.75 1.75 1.75 1.75 1.75 1.75

Frequency scaling 15% 10% 8% 5% 4% 3% 2%

Vdd scaling -10% -7.5% -5% -2.5% -1.5% -1% -0.5%

Dimension & Capacitance 0.75 0.75 0.75 0.75 0.75 0.75 0.75

SD Leakage scaling/micron 1X Optimistic to 1.43X Pessimistic

65nm Core + Local Memory

Memory 0.35MB

5mm2 (50%)

DP FP Add, Multiply
Integer Core, RF

Router

5mm2 (50%)

10mm2, 3GHz, 6GF, 1.8W

8nm Core + Local Memory

Memory 0.35MB
0.17mm2 (50%)

DP FP Add, Multiply
Integer Core, RF

Router
0.17mm2 (50%)

0.34mm2, 4.6GHz, 9.2GF, 0.24 to 0.46W

~0.6mm
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Processor Chip

2018, 8nm technology node20mm

400mm2

20mm

Cores/Module 1150

Total Local Memory 400 MB

Frequency 4.61 GHz

Peak performance 10.6 TF

Power 300 - 600W

Energy efficiency 34 - 18 GF/Watt

30-60 MW for Exascale
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Processor Node

128 GB 128 GB

256GB/s 64b

128 GB 128 GB

Peak performance 10.6 TF

Total DRAM Capacity 512GB

Total DRAM BW 1TB/s (0.1B/FLOP)

DRAM Power 800 W*

Total Power 1100 - 1400W

Energy efficiency 9.5 - 8 GF/Watt

*Assumes 5% Vdd scaling each technology generation
140 pJ energy consumed per accessed bit

110-140 MW for Exascale
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Node Power Breakdown

DRAM

Fabric

Compute

10 TF, ~ 1KW
Aggressive 
voltage 
scaling

Hierarchical 
heterogeneous 
topologies

Efficient signaling
Repartitioning
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Voltage Scaling
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Energy Efficiency with Vdd Scaling

0

20

40

60

80

100

120

140

160

65nm 45nm 32nm 22nm 16nm 11nm 8nm 5nm

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

G
F

/W
)

Vdd

0.7x

0.5x

~3X Compute energy efficiency with Vdd Scaling



14

On-die Mesh Interconnect

On-die network (mesh) power is high
Worse if link width scales up each generation
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Mesh—Retrospective
Bus: Good at board level, does not extend well

• Transmission line issues: loss and signal integrity, limited frequency

• Width is limited by pins and board area

• Broadcast, simple to implement

Point to point busses: fast signaling over longer distance

• Board level, between boards, and racks

• High frequency, narrow links

• 1D Ring, 2D Mesh and Torus to reduce latency

• Higher complexity and latency in each node

Hence, emergence of packet switched network

But, pt-to-pt packet switched network on a chip?
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Interconnect Delay & Energy
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Bus—The Other Extreme…
Issues:
Slow, < 300MHz
Shared, limited scalability?

Solutions:
Repeaters to increase freq
Wide busses for bandwidth
Multiple busses for scalability

Benefits:
Power?
Simpler cache coherency

Move away from frequency, embrace parallelism
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Hierarchical & Heterogeneous
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Revise DRAM Architecture

Page Page Page
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Activates many pages
Lots of reads and writes (refresh)
Small amount of read data is used
Requires small number of pins

Traditional DRAM New DRAM architecture

Page Page Page
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Activates few pages
Read and write (refresh) what is needed
All read data is used
Requires large number of IO’s (3D)

Energy cost today:
~175 pJ/bit

Signaling

DRAM 

Array

M Control
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Data Locality

Core-to-core
Communication 
on the chip:
~10pJ per Byte

Chip to memory
Communication:
~1.5nJ per Byte
~150pJ per Byte

Chip to chip
Communication:
~100pJ per Byte

Data movement is expensive—keep it local
(1) Core to core, (2) Chip-to-chip, (3) Memory
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Impact of Exploding Parallelism
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1. Strike a balance between Com & Computation
2. Resiliency (Gradual, Intermittent, Permanent faults)



22

Road to Unreliability?

From Peta to Exa Reliability Issues

1,000X parallelism More hardware for something to go wrong

>1,000X intermittent faults due to soft errors

Aggressive Vcc scaling 

to reduce power/energy

Gradual faults due to increased variations

More susceptible to Vcc droops (noise)

More susceptible to dynamic temp variations

Exacerbates intermittent faults—soft errors

Deeply scaled 

technologies

Aging related faults

Lack of burn-in?

Variability increases dramatically

Resiliency will be the corner-stone
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Resiliency
Faults Example

Permanent faults Stuck-at 0 & 1

Gradual faults Variability

Temperature

Intermittent faults Soft errors

Voltage droops

Aging faults Degradation

Faults cause errors (data & control)

Datapath errors Detected by parity/ECC

Silent data corruption Need HW hooks

Control errors Control lost (Blue screen)

Minimal overhead for resiliency

Circuit & Design

Microarchitecture

Microcode, Platform

Programming system

Applications Error detection
Fault isolation
Fault confinement
Reconfiguration
Recovery & Adapt

System Software
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Needs a Paradigm Shift

Evaluate each (old) architecture feature with 
new priorities

Single thread performance Frequency

Programming productivity Legacy, compatibility

Architecture features for productivity

Constraints (1) Cost

(2) Reasonable Power/Energy

Throughput performance Parallelism

Power/Energy Architecture features for energy

Simplicity

Constraints (1) Programming productivity

(2) Cost

Past and present priorities—

Future priorities—
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Summary

Von-Neumann computing & CMOS technology 

(nothing else in sight)

Voltage scaling to reduce power and energy

• Explodes parallelism

• Cost of communication vs computation—critical balance

• Resiliency to combat side-effects and unreliability

Programming system for extreme parallelism

System software to harmonize all of the above


