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Computational biology
* Sequence analysis / bioinformatics

+ Systems biology — coupled ODEs.
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Overview of biomolecular simulation tum calculations = reaction mechanism

molecular machines and binding

Typically exert largest demand on CPU resources - 108-10'! time steps,
10%-107 atoms, 1000-10,000 cores for 6-18 months per project.

Molecular Dynamics Biomolecular time scales span > 15 orders of magnitude
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7 more orders of magnitude needed for in silico drug design
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Biomedical applications: antibiotics

50% of antibiotics target the Ribosome
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Ribosome is like the CPU of the cell:
it reads genetic information and makes proteins

Simulation size follows ~ quasi-Moore’s law
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« RIBO simulation is largest biomolecular simulation published to date
onmatsu & Tung, J. Phys. (200€ anbonmatsu & Tung, J.Str.Biol. (

Antibiotics: MRSA (methicillin-resistant staph)
colonizes 5% of all US hospital patients

4 major antibiotic targets:

Bacteria

MRSA is topic of today’s Oprah Winfrey show

Rate-limiting step of decoding is movement of tRNA into

Use targeted MD

Simulate rare barrier-crossing P/P State A/A State
events, not rates! g

Lagrange-multiplier constraint

on RMSD to target

Decrease RMSD as fnct. of time

Satisfies experimental BCs.

Make testable predictions of

tRNA-rRNA interactions
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Available data on accommodation Simulation Set-up: accommodation

Rapid

Kinetics « Explicit Solvent

Chemical
Z;‘L‘e‘:t‘b“ - « Particle-mesh Ewald electrostatics
mutation 24 ) * NAMD scalable MD code

- « AMBER force field

uesC « 1.6 ns equilibration time
22 ns production (new runs 500 ns)
e 2.64 x 10 atoms

« Outstanding dynamic load balancing

Replica method produces enhanced sampling
(Sugita and Okamoto, 1999; Garcia and Sanbonmatsu PNAS 2002)

« N replicas are simulated in parallel at different temperatures

* Replicas are allowed to swap temperatures providing thermal ‘kick
Plexchang
* A 48 replica simulation with 15 us total sampling (312 ns/replica)
samples more than a 15 us standard MD simulation (sanbonmatsu and Garcia

« Estimates range between 25-75 fold increase in sampling
(conservative estimate: 15 us total sampling ~ 0.375 ms effective sampling).
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Entropy shuttling facillitates
gentamicin dissociation
from the ribosome

Andrea C. Vaiana and Kevin Y. Sanbonmatsu

Los Alamos National Lab

T-10 Theoretical Biology and Biophysics Bioenergy applications: cellulosic ethanol

Replica Exchange Molecular Dynamics Simulation
Total sampling: 15 microseconds

LANL Coyote Supercomputer




Bioenergy

® |dea: produce ethanol from simple sugars via
fermentation.

e Sugar-cane ethanol: requires tropical climate,
fertile soil

e Corn-based ethanol: use enzyme to convert
starch to sugar. Not sufficient, increases food
prices.

e Cellulosic ethanol: recycles agricultural waste;

can use sawdust, woodchips, switchgrass (grown

on wastelands).
e Cellulosic ethanol: potential to satisfy 30% of
transportation fuel demand.

Cellulose

e Cellulose exists in the form of
stacked layers of two-dimension
crystalline sheets.

® Each sheet consists of long
polysaccharide chains
connected in a lattice by
hydrogen bonds .

® A pre-treatment step is

% {0 3 .
necessary to make the cellulose after digestion

susceptible to breakdown by
the cellulosome.

Simulation Set-up

e Simulate movement of cellulose strand
through cellulosome subunits

e Steered MD (restrain end of cellulose chain,

apply force on c-o-m of subunits.

e Particle-mesh Ewald electrostatics
® GROMACS code

e AMBER force field

Cellulose degradation is a bottleneck
in ethanol production

Ethanol production:
1. Pre-treatment

2. Cellulose degradation by
cellulase enzymes

. Fermentation

Crystalline
cellulose

Cellulose
® Resides in plant cell walls
e Extremely tough, resisting treatment by acid and
steam explosion.
e Exists in the form of 2-D crystalline sheets.

The Cellulosome

® Bacteria have evolved extremely
efficient ways of degrading
cellulose.

® The "Cellulosome" is a molecular
machine that degrades cellulose.

e Acts like molecular paper
shredder.

e "Pac-men" subunits degrade single
strands of cellulose.

® The mechanism is poorly
understood.

® |dea: make designer cellulosomes
with customized subunits.

et al 1998
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Los Alamos RoadRunner

New “Hybrid” architecture based on SONY PlayStation 3 “Cell” chip
Cell has 7 cores (1 PPU, 6 SPUs) - 200 Gflops per cell
>2x faster than BG/L LLNL

12,960 cells, 6,948 dual-core AMD, 80 terabytes RAM (2cell,2 dual amd/node).

Initial conditions

. itial conditions

Porting to RoadRunner
® Gromacs modified: IBM DaCSs libraries for
nonbonded calculations on the cell processors.
e Other modifications: launching the cell
processes, aligned memory buffers, demand DMA
transfers, and the port of the water-water
nonbonded kernel on the cell broadband
accelerator.

Initial conditions
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Late times Trajectory
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