
Cray’s Cascade Program

John Levesque
CTO Office

Director – Cray Supercomputing Center of Excellence

Preliminary Information Copyright 2006 Cray Inc. 3

High Productivity Computing Systems
Goals:
 Provide a new generation of economically viable high productivity computing systems for the national

security and industrial user community (2007 – 2010)

Impact:
 Performance (efficiency): critical national security

applications by a factor of 10X to 40X
 Productivity (time-to-solution)
 Portability (transparency): insulate research and

operational application software from system
 Robustness (reliability): apply all known techniques

to protect against outside attacks, hardware faults,
& programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant

modeling and biotechnology

HPCS Program Focus Areas

Preliminary Information Copyright 2006 Cray Inc. 4

Motivation for Cascade
Why are HPC machines unproductive?
• Difficult to write parallel code (e.g.: MPI)

• Major burden for computational scientists

• Lack of programming tools to understand program behavior
• Conventional models break with scale and complexity

• Time spent trying to modify code to fit machine’s characteristics
• For example, cluster machines have relatively low bandwidth between

processors, and can’t directly access global memory…
• As a result, programmers try hard to reduce communication, and have

to bundle communication up in messages instead of simply accessing
shared memory

If the machine doesn’t match your code’s attributes,
it makes the programming job much more difficult.

And code’s vary significantly in their requirements…

Preliminary Information Copyright 2006 Cray Inc. 5

Cray X1E

Cray XD1

Cray XT3

BlackWidow

Cray XT4

2006

2007

2008

Cray XMT

2009
Cray XT4
Upgrade

The Cray Roadmap

Realizing Our Adaptive
Supercomputing Vision

Phase II:
Cascade Program
Adaptive
Hybrid System

Phase 0: Individually Architected Machines
Unique Products Serving Individual Market Needs

2010

Preliminary Information Copyright 2006 Cray Inc. 6

Diverse Application Needs
• To scale an application, it must have some form of parallelism
• Many HPC apps have rich, SIMD-style data-level parallelism

• They perform similar operations on arrays of data
• Can significantly accelerate via vectorization

• Those that don’t generally have rich thread-level parallelism
• Allow many independent threads performing independent work
• This parallelism may be found at multiple levels in the code
• Can significantly accelerate via multithreading

• Some parts of applications are not parallel at all
• Need fast serial scalar execution speed
• Slow serial performance will drag down performance (Amdahl’s Law)

• Applications also vary in their memory and network bandwidth needs
• Low vs. high
• Dense vs. sparse

Preliminary Information Copyright 2006 Cray Inc. 7

Cascade Approach to Higher Productivity
• Ease the development of parallel codes

• Legacy programming models: MPI, OpenMP
• Improved variants: SHMEM, UPC and CAF
• New alternative: Global View (Chapel)

• Provide programming tools to ease debugging and tuning
at scale
• Automatic performance analysis, relative debugging

• Design an adaptive, configurable machine that can match
the attributes of a wide variety of applications:

• Serial (single thread, latency-driven) performance
• SIMD data level parallelism (vectorizable)
• Fine grained MIMD parallelism (threadable)
• Regular and sparse bandwidth of varying intensities

⇒ Increases performance
⇒ Significantly eases programming
⇒ Makes the machine much more broadly applicable

Preliminary Information Copyright 2006 Cray Inc. 8

Cascade Processing Technology
• Partnering with AMD on HPCS Phase III Proposal
• Start with best of class microprocessor: AMD Opteron™

• Industry standard x86/64 architecture
• Integrated memory controller

⇒ very low memory latency (~50ns)
• Open standard, high speed interface (HyperTransport)
• Dual core today with strong roadmap

• Cray communications acceleration
• Globally addressable memory
• Scalable addressing, translation and synchronization
• Unlimited concurrency for latency tolerance
• Support for low latency, low overhead message passing too

• Cray computational acceleration
• MVP (multi-threaded/vector processing) architecture
• Exploits compiler-detected parallelism within a node
• Extremely high single-processor performance

Preliminary Information Copyright 2006 Cray Inc. 9

Cascade System Architecture

• Globally addressable memory with unified addressing architecture
• Configurable network, memory, processing and I/O
• Heterogeneous processing across node types, and within MVP nodes
• Can adapt at configuration time, compile time, run time

Globally Addressable Memory
Support for partitioned or flat address space

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

Granite
MVP

Compute
Nodes

FPGA
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron
Compute

Nodes

Baker
Opteron

SIO
Nodes

High Bandwidth Interconnect
Extremely flexible and configurable

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Baker
Opteron

SIO
Nodes

Opteron
Service I/O

Node

Gemini
Communication

Accelerator

Network

Memory

AMD
Processor

I/O Interface

Scorpio
Co-processor

Network

Memory

AMD
Processor

Granite MVP

Compute
Node

Baker
Opteron

Compute
Node

Gemini
Communication

Accelerator

Network

Memory

AMD
Processor

FPGA
Compute

Nodes

Preliminary Information Copyright 2006 Cray Inc. 10

Integrated Multi-Architecture System

COTS Tools

Fortran, gcc, gdb
PBSpro, LSF, Moab

HPC Application Programs

ALPS (Application Level Placement Scheduler) Infrastructure

Baker
Opteron
Compute

Node

Baker
Opteron
Compute

Node

Baker
Opteron
Compute

Node

Baker
Opteron
Compute

Node

Baker/
Opteron
Compute

Node

Baker
Opteron
Compute

Node

CNL CNL CNLCNL CNL CNL

FPGA Runtime

Granite
Compute

Node

Granite
Compute

Node

CNL CNL CNL

COTS Enhanced Runtime

Baker
Opteron

SIO
Node

Baker
Opteron

SIO
Node

Linux Linux

COTS Enhanced Libraries

MPI ScientificOther

Granite Libraries

MPI Other

Programmers

Cray PE Tools

Cascade Compiler
Debugger suite

CrayPat/Apprentice2

Chapel (future)

Memory

Opteron

Core Core Core Core
Core Core Core Core

FPGA Libraries

MPI Other

Granite Runtime

CNL

FPGA
Compute

Node

FPGA
Compute

Node

Memory

Core Core Core Core

Opteron

Core Core Core Core
Core Core Core Core

Core Core Core Core

Memory

FPGA? ? ??

? ? ??

Opteron

Core Core Core Core
Core Core Core Core

PCIe2
I/O

Memory

Opteron

Core Core Core Core
Core Core Core Core

Global Shared Memory Segments

Programming Models

OpenMPpthreads CAFUPCSHMEM MPI Chapel (future)

Language BasedLibrary Based

ALPS

Preliminary Information Copyright 2006 Cray Inc. 11

Cascade from the User’s Viewpoint

• First Step
• Run application across Opteron cores and profile to identify

computational hotspots
• Second Step

• Can we incorporate the hotspot into a high level parallel loop?
• Are the inner loops vector?

 Direct the compiler to parallelize the outer parallel loop using OpenMP and/or
compiler directives to generate tens of threads

 Compiler will vectorize inner most loop nests
• Are the inner loops scalar

 Direct the compiler to use the outer loops to generate hundreds of threads.
• No parallel outer loops

 Run in scalar on the Opteron

• Third Step
• Can we use global addressing to improve scalability

• Fourth Step
• Can we use heterogeneity to divide application into parallel tasks each of

which may use scalar and/or parallel. Parallel scalar threading and
parallel vector threading can co-exist in the same routine.

Preliminary Information Copyright 2006 Cray Inc. 12

Cascade from the User’s Viewpoint

• Granite has a fully functional compiler that is built upon
the best vectorizing/parallelizing compiler in the industry
• Analyzing and generating vector threads is identical to techniques

the multi-streaming, vectorizing compiler used for X1E and BW
• Analyzing and generating scalar threads is identical to the

techniques used by the multi-streaming compiler for the X1E and
the threading compiler for the MTA and XTM

• The user can use Fortran, C, C++
• Directives can be used to aid the compiler in generating the most

efficient parallelization – just like always

• Or the user can employ Chapel to write a new application

Preliminary Information Copyright 2006 Cray Inc. 13

So the user does not have to code in this:
twist : process (clk, reset_n) is

variable v_y : std_logic_vector(31 downto 0);
begin -- process twist
if reset_n = '0' then -- asynchronous reset (active low)
s_mt_kk <= (others => (others => '0'));
s_mt_kk_m <= (others => (others => '0'));
s_mt_new <= (others => (others => '0'));
s_mt_wr_addr <= (others => (others => '0'));

elsif clk'event and clk = '1' then -- rising clock edge
if (enable = '1') then
s_mt_wr_addr <= s_mt_wr_addr(2 downto 0) & s_kk;

-- Pass the output of the RAM into register pipelines.
s_mt_kk(3 downto 2) <= s_dob(0)(63 downto 32) &

s_dob(0)(31 downto 0);
s_mt_kk_m(3 downto 2) <= s_dob(1)(63 downto 32) &

s_dob(1)(31 downto 0);
s_mt_kk(1 downto 0) <= s_mt_kk(3 downto 2);
s_mt_kk_m(1 downto 0) <= s_mt_kk_m(3 downto 2);

-- Compute the new values for the mt array.
for word in 0 to 1 loop
v_y := s_mt_kk(word)(31) & s_mt_kk(word+1)(30 downto 0);
if (v_y(0) = '0') then -- even
s_mt_new(word) <= s_mt_kk_m(word+1) xor ('0' & v_y(31 downto 1));

else -- odd
s_mt_new(word) <= s_mt_kk_m(word+1) xor ('0' & v_y(31 downto 1))

xor c_magic;
end if;

end loop; -- word
end if;

Preliminary Information Copyright 2006 Cray Inc. 14

But something they are used to:
!$OMP PARALLEL DO PRIVATE(iblock,this_block)

do iblock=1,nblocks_tropic
this_block = get_block(blocks_tropic(iblock),iblock)

!---- calculate (PC)r store in Z
if (lprecond) then

call preconditioner(Z,R,this_block,iblock)
else ! use diagonal preconditioner

Z(:,:,iblock) = R(:,:,iblock)*A0R(:,:,iblock)
endif

!---- Compute intermediate result for dot product
WORKN(:,:,1,iblock) = R(:,:,iblock)*Z(:,:,iblock)

!---- update conjugate direction vector S
S(:,:,iblock) = Z(:,:,iblock)

!---- compute Q = A * S
call btrop_operator(Q,S,this_block,iblock)

!---- compute intermediate result for dot product
WORKN(:,:,2,iblock) = S(:,:,iblock)*Q(:,:,iblock)

end do

!$OMP END PARALLEL DO

Preliminary Information Copyright 2006 Cray Inc. 15

Chapel
A new parallel language developed by Cray for HPCS

• Themes:
• raise level of abstraction, generality compared to SPMD approaches
• support prototyping of parallel codes + evolution to production-grade
• narrow gap between parallel and mainstream languages

• Chapel’s Productivity Goals:
• vastly improve programmability over current languages/models
• support performance that matches or beats MPI
• improve portability over current languages/models (similar to MPI)
• improve code robustness via improved abstractions and semantics

• Status:
• draft language specification available
• portable prototype implementation underway
• performing application kernel studies to exercise Chapel
• working with HPLS team to evaluate Chapel
• initial release made to HPLS team in December 2006

Preliminary Information Copyright 2006 Cray Inc. 16

Chapel Code Size Comparison

STREAM
Triad

Random
Access

FFT

Preliminary Information Copyright 2006 Cray Inc. 17

So what are we asking the user to do?

• Continue to think about using 30,000-40,000 MPI tasks
• At least some of the users are doing this today

• Continue to investigate cache optimization to avoid the
memory wall
• Blocking
• Alignment

• Think about extending the size of your problem on the
node – a second level of parallelism.

• Think about extending your MPI to utilize the using global
addressability.

• Think about heterogeneity

Preliminary Information Copyright 2006 Cray Inc. 18

Cascade from the User’s Viewpoint

• Craypat will be extended to address the multi-processing
modes of the Granite processor
• Overhead of generating Granite parallel region versus benefit of

running on the Granite processor.
• Comparative performance of running in various modes

• Scalar on Opteron
• Fully threaded
• Vector

• Comparative debugger
• Shows differences in running in various modes

• Scalar on Opteron
• Fully threaded
• Vector

• Quickly identify if loop should not have been
parallelized/vectorized

• Perhaps private variables should be shared, etc.

Preliminary Information Copyright 2006 Cray Inc. 19

Cray Peta-Scale Software Themes

• Cray Software Focus is on Productivity
• Delivering performance – absolute & time to completion
• Ease of use
• Compatibility with previous generations and HPC community

• Building from Baker
• Extending the evolution of software from XT to Baker to Peta-Scale
• Utilizing technology from other Cray products

• Heterogeneity Management
• Transparently managed for the user - OR -
• User can access directly the specific components that are required

• Extending with Granite
• New, finer grained, techniques for vector and threaded parts of

applications
• More productive user interaction – compiler provides more assistance

Preliminary Information Copyright 2006 Cray Inc. 20

Application Needs Drive Software Development

Key Application Requirements –
• Support for existing and future programming models

• MPI and Fortran are dominant programming models currently.
• Future programming models such as CAF, UPC, SHMEM, ARMCI require Globally
Addressable Memory

Programming Model Scaling Aids Performance Libraries I/O

Fo
rtr

an
 7

7

Fo
rtr

an
 9

0

Fo
rtr

an
 9

5

C
/C

++

M
P

I

O
pe

nM
P

O
pe

nM
P

P
th

re
ad

s

C
A

F/
U

P
C

S
H

M
E

M

M
P

I2

A
ss

em
bl

er

B
LA

S

FF
TW

LA
P

A
C

K

P
B

LA
S

P
et

S
C

S
ca

la
pa

ck

C
ra

y
S

ci
lib

H
D

F5

M
P

I-I
O

ne
tC

D
F

DNS 1 1 1 1 1 1 1 1
MILC 1 1 1 1 1
NAMD 1 1 1 1 1 1
WRF 1 1 1 1 1 1
POP 1 1 1 1 1 1
HOMME 1 1 1 1 1 1
CICE 1 1 1 1 1 1
RMG 1 1 1 1 1 1 1 1 1 1 1
PARSEC 1 1 1 1 1 1 1 1
Espresso 1 1 1 1 1 1 1 1
LSMS 1 1 1 1 1 1 1
SPECFEM3D 1 1 1 1 1 1
Chimera 1 1 1 1 1 1 1 1
GTC 1 1 1 1 1 1 1
GAMESS 1 1 1 1 1 1

Now Rewrite

Application
libraries
Walkthroughs of
many applications
show which math, IO,
and communication
libraries we need to
optimize.

Preliminary Information Copyright 2006 Cray Inc. 21

Programming Environment (outstanding features)

Provides for all of these common HPC programming models.
• MPI, Cray SHMEM, UPC, CAF, OpenMP, pthreads, ARMCI, and Global Arrays
Provides math libraries that support ALL the programming models
• Vector and matrix algebra, sparse matrix, and FFT
Performance Analysis System
• CrayPAT – instrumentation and data collection
• Cray Apprentice2 – interactive analysis of performance data
• Automatic Performance Analysis – automated identification of bottlenecks
Scalable Data Centric Debugger
• Familiar interfaces such as TotalView and gdb
• Provides a Scalable Debug Manager
• Comparative debugger – simultaneously compares a properly working version
of an application to a version that is not working

Preliminary Information Copyright 2006 Cray Inc. 22

Peta-scale Debugging Challenges

• Peta-scale debugging is mind boggling
• User’s brain and debugger have trouble scaling
• Future architecture adds complexity

• Hundreds of thousands of threads make direct control untenable
• Decoupled instruction streams
• Multiple ISAs
• Imprecise traps

Preliminary Information Copyright 2006 Cray Inc. 23

• Support for industry accepted Opteron debugging tools which
are popular for initial small scale debugging of an application
• gdb
• TotalView

• Innovative techniques for usability and scalability
• Scalable debugger manager

• Tailored to MPI application debug
• Comparative debugging

• Data-centric, comparative debugging
• Dual code debugging

• Run optimized until area of concern, then instrumented

Debug Suite

Preliminary Information Copyright 2006 Cray Inc. 24

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

Node
Marble

Compute
Node

Marble
Compute

Node

Marble
Compute

Node

Marble
Compute

NodeBaker
SIO Node

Baker
SIO Node

Baker
SIO NodeBaker

SIO Node
Baker

SIO NodeBaker
SIO Node

Scalable Debug Manager

Scalable
Debug

Manager

 Component of Parallel Tools Project (PTP)

 Developed at LANL for debugging MPI applications at scale

 Deployed as an MPI “co-application” with ALPS

 Uses gdb as the debugger demon on each node

 SDM provides control and debug output filtering for the
thousands of gdb processes

Preliminary Information Copyright 2006 Cray Inc. 25

Comparative Debugging

RD
Client

RD
Server

Parallel
1

RD
Server

Parallel
2

RD
Server

Serial

Serial
Version Parallel Version

System
2

System
1

RD
Client

RD
Server

Application

RD
Server

Application

• Focus more on data – not as much on program flow
• “Control” and “experiment” program run in large lock steps
• Program data is compared at each step
• Effective for comparing different implementations
• Narrow down problem without massive thread study

MPI & OpenMP VersionMPI Version

Preliminary Information Copyright 2006 Cray Inc. 26

Comparative Debugging

• Scenarios
• Porting between architectures
• Serial converted to parallel
• One optimization level versus another
• Small scaling versus large scaling
• One programming language converted to another
• COTS only (a la cluster) versus MVP
• MVP threaded versus MVP vector

• Requirements
• Simultaneous run of two applications
• Ability to compare data from the different applications
• Ability to assert the match of data at given points in execution

Preliminary Information Copyright 2006 Cray Inc. 27

Data Comparison and Reports

• Data comparison
• Tolerance control – nobody expect it to be perfect
• Array subsets – correlate serial to parallel bits
• Array index permutation – loops rearranged
• Automated asserts – let it run until a problem is found
• Forcing correct values – continue on with correct data

• Discrepancy reporting
• Print – for really simple stuff
• Rectangular bitmap – black or white pixels
• Visualization packages

Preliminary Information Copyright 2006 Cray Inc. 28

Comparative Debugging Example
• MM5 Weather model
• Serial versus parallel
• Difference >0.1%
• Narrowed to missing term in equation
• … term found and added in

Courtesy of David Abramson from GuardSoft

Preliminary Information Copyright 2006 Cray Inc. 29

Performance Analysis Tools for Petascale

Cray’s Apprentice2 tool is already a world leader in large scale
performance analysis. Known for being easy to use.

Call Graph Profile

Communication &
I/O Activity View

Load balance
views

Function
Overview

Time
Line
& I/O
Views

Pair-wise
Communication
View

Preliminary Information Copyright 2006 Cray Inc. 30

Huge amount of
Measurement

data

Little
Simple
analysis

Even more
Derived analysis

data

Optimization with Traditional Performance Tools

Preliminary Information Copyright 2006 Cray Inc. 31

• Automatic performance analysis tools using expert systems guided by
performance models to analyze the performance data in order to identify and expose
performance anomalies:

• Load imbalance
• Communication / synchronization problems
• Saturation of network links
• Automatic performance analysis

• Post-mortem
• During runtime
(to manage data scalability)

Cray Performance Analysis 2011

• Performance measurement tools provide the data needed for users to tune and
optimize applications

• Users still need to understand details of system software and architecture to correlate
observations from performance measurement with the system in use to understand
the performance behavior of the application

Huge amount of
Measurement

data

Relevant
problems
and data

Preliminary Information Copyright 2006 Cray Inc. 32

Cascade Summary
• Performance

• Configurable, very high bandwidth memory and interconnect
• Globally addressable memory with fine-grain synchronization
• Heterogeneous processing to match application (serial, TLP, DLP)

• Programmability
• Shmem(), UPC, CAF, and Chapel high-level parallel language
• Automatic performance analysis and scalable debugging tools
• Globally addressable memory with fine-grain synchronization
• Heterogeneous processing supports wide range of programming idioms

• Portability
• Linux-based OS supports standard POSIX API & Linux services
• Support for mixed legacy languages and programming models
• Chapel provides an architecturally-neutral path forward for code

• Robustness
• Central administration and management
• Hardware Supervisory System
• Transactional system state, virtualized failover

Preliminary Information Copyright 2006 Cray Inc. 33

	Slide Number 1
	High Productivity Computing Systems
	Motivation for Cascade
	The Cray Roadmap��Realizing Our Adaptive �Supercomputing Vision
	Diverse Application Needs
	Cascade Approach to Higher Productivity
	Cascade Processing Technology
	Cascade System Architecture
	Integrated Multi-Architecture System
	Cascade from the User’s Viewpoint	
	Cascade from the User’s Viewpoint	
	So the user does not have to code in this:
	But something they are used to:
	Chapel�A new parallel language developed by Cray for HPCS
	Chapel Code Size Comparison
	So what are we asking the user to do?
	Cascade from the User’s Viewpoint	
	Cray Peta-Scale Software Themes
	Application Needs Drive Software Development
	Programming Environment (outstanding features)
	Peta-scale Debugging Challenges
	Debug Suite
	Scalable Debug Manager
	Comparative Debugging
	Comparative Debugging
	Data Comparison and Reports
	Comparative Debugging Example
	Performance Analysis Tools for Petascale
	Slide Number 29
	Cray Performance Analysis 2011
	Cascade Summary
	Slide Number 32

