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Outline

• Acceleration issues in general: host-accelerator 
bandwidth/latency

• Accelerator performance analysis examples

• Measured and expected application acceleration:
– Molecular Dynamics: AMBER and NAB

– Quantum Chemistry: GAUSSIAN, Qbox, PARATEC

– Monte Carlo models for PDEs

– LS-DYNA and ANSYS

– PAM-CRASH

– MATLAB applications

• Summary
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Thesis

• Performance analysis for accelerator cards is 
like analysis for message-passing parallelism, 
but with more levels of memory and 
communication.

• Application porting success depends heavily 
on attention to memory bandwidths, but 
(surprisingly) not so much the host-accelerator 
bandwidth. 



www.clearspeed.com Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. 
4

The accelerator idea is as old as supercomputing itself

Even in 1977, HPC users faced issues of when it makes 
sense to use floating-point-intensive vector hardware. 

General-purpose computer
Runs OS, compilers, disk, 
printers, user interface

Attached vector processor 
accelerates certain 
applications, but not all

2 MB
10x speedup

3 MB/s

“History doesn’t repeat itself, but it does rhyme.”
—Mark Twain
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IDC survey of planned HPC accelerator use
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Is this trip necessary? Bandwidth issues

• Acceleration software tests 
candidates for work on the 
board. If too small, it leaves 
them on the host.

• Performance claims must 
assume host-resident data. 
Beware of benchmarks that 
leave out the time to move the 
data to accelerator memory.

• Remember Bailey’s 12 Ways…

Node

Node 
memory

Accelerator

Accelerator 
memory

Bandwidth = B

accelerator

node

break-
even

speed

time
(larger problem size)
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Simple offload model is out of date

• Accelerator must be quite fast for this approach to have 
benefit

• This “mental picture” may stem from early days of Intel 
80x87, Motorola 6888x math coprocessors

latencyHost latency Host

Accelerator
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Acceleration model: Host continues working

• Accelerator needs only be fast enough to make up for 
time lost to bandwidth + latency

• Easiest use model: host and accelerator share the same 
task, load balanced to complete at same time

• More flexible: Host, accelerator specialize what they do

latencyHost latencyHost Host

Accelerator
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Host can work while data is moved

• PCI transfers might burden a single x86 core by 60%
• Other cores on host continue productive work at full 

speed

latencyHost latency Host

Accelerator

HostHost
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Card need not wait for all data before starting

• In practice, latency is microseconds; the accelerator 
task takes seconds. Latency gaps above would be 
microscopic if drawn to scale.

• The accelerator can be slower than the host, and still 
add performance!

Accelerator

latencyHost latency Host

Accelerator

Host
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Square DGEMM speeds as of December 2006

Doubling host-to-card bandwidth 
has minor effect because of I/O 
overlap and large task grain size.
A zero-latency connection would 
not visibly affect either curve.
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Accelerator memory hierarchy

Total: 1.0 GB

Total: 6.4 GB/s

Total: 1.1 MB

Total: 192 GB/s

Total: 24 KB

Total: 2 TB/s

Total: 96 GFLOPS
(but only 25 watts)
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Visualization of algorithm overhead: DGEMM

Matrix multiply 
(DGEMM) is a perfect 
analog to a folded 
box. 

Volume is the number 
of multiply-adds. Surface “padding” 

shows overheads
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Tier 1

Build up the bricks through the hierarchy

Tier 2
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Tier 3 overhead was originally harder to overlap
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Simple but decent 
accelerator 
performance 
model:
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Unoptimized Tier 3 timing

K=960, M=1920, N=1920
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Optimized Tier 3 timing

Can now accelerate matrices as small as N=576
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Almost doubled sustained speed
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Previous DGEMM
asymptotic to ~56 GFLOPS

Revised DGEMM
asymptotic to ~90 GFLOPS

Does not include host 
contribution, which adds 5 to 60 

GFLOPS depending on host

Matrix size

GFLOPS

Note: curve only samples integer multiples of vector size
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Advance Accelerator Board

CSX 600

Pipeline

CSX 600

Pipeline

Host
CPU(s)Host

CPU(s)Host
CPU(s)

Detailed profiling is essential for accelerator tuning

Advance Accelerator Board

Host
CPU(s)

CSX600

Pipeline

HOST/BOARD 
INTERACTION
View host/board 
interactions
Measure transfer 
bandwidth.
Check overlap of host 
and board compute

ACCELERATOR PIPE
View instruction issue.
Visualize overlap of 
executing instructions. 
Get cycle-accurate 
timing.
Remove instruction-level 
performance bottlenecks.

CSX600 SYSTEM
Trace at system level.
Inspect overlap of 
compute and I/O.
View cache utilization.
Graph performance.

CSX600

Pipeline

HOST CODE 
PROFILING
Visually inspect 
multiple host threads.
Time specific code 
sections.
Check overlap of host 
threads
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Pipeline view of DGEMM inner loop

Profile the code 
running at the 

instruction level

See the pipeline 
performance for 
each instruction

Tune the instruction 
scheduling for the 
application code
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System level: multiple DGEMM calls

View the DGEMM 
calls on host and 

accelerator

Much higher level 
of detail available 
from the profiler

Each call syncs up 
with the host view 

of accelerator
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More geometric analogs: equation solving

N equations N unknowns

N iterations

Dongarra’s new LAPACK 
will make QR, Cholesky, 
LU factoring, etc. much 
easier to accelerate.

Volume = 1⁄3 N3

multiply-adds

Excellent test of hardware correctness
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Accelerated cluster model accurate to about ±5%

    

 

Rest =
1

1
PQγ

+
3α N B +1( ) lg P + P[ ]

2N 2N B

+
3β 3P + Q( )

4NPQ

NB = Block size, the width of the “panels” used to update the linear system with 
DGEMM

N = Dimension of the linear system (number of equations to solve)
P, Q = Dimensions of the two-dimensional mapping of computational nodes
α = Effective point-to-point latency of MPI broadcast, in seconds
β = Effective point-to-point reciprocal bandwidth of message broadcast, in 

seconds per datum
γ = Effective floating-point operations per second of a node independent of MPI 

operations
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Memory bandwidth dominates performance model

Multicore x86

Node 
memory

Accelerator

Accelerator 
DRAM

PCIx or PCIe
1 to 2 GB/s

• Apps that can stage into local RAM (Tier 1) can go 10x 
faster than current high-end Intel, AMD hosts

• Apps that must reside in DRAM (Tier 2) will actually run 
slower by about 3x (for fully optimized host code)

• Fast Fourier Transforms can go either way!

Accelerator
Local RAM

17 GB/s 6.4 GB/s

192 GB/s



www.clearspeed.com Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. 
25

Math functions reside at Tier 1, hence fast

Typical speedup of ~8X over the fastest x86 processors, 
because math functions stay in the local memory on the 
card

64-bit Function Operations per Second (Billions)

0.0

0.5

1.0

1.5

2.0

2.5

Sqrt InvSqrt Exp Ln Cos Sin SinCos Inv 
Function name

2.6 GHz dual-core Opteron
3 GHz dual-core Woodcrest
ClearSpeed Advance card
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Monte Carlo PDE methods exploit Tier 1 bandwidth

• No acceleration: 200M samples, 79 seconds
• 1 accelerator: 200M samples, 3.6 seconds
• 5 accelerators: 200M samples, 0.7 seconds
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Real apps do work resembling “EP” of NAS Parallel 
Benchmarks. “Quants” solve PDEs this way for options pricing,
Black-Scholes model (a form of the Heat Equation)
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Why do EP-type Monte Carlo apps need 64-bit?

• Accuracy increases as the 
square root of the number 
of trials, so five-decimal 
accuracy takes 10 billion 
trials.

• But, when you sum many 
similar values, you start to 
scrape off all the 
significant digits.

• 64-bit summation needed 
to get a single-precision 
result!

Single precision:
1.0000x108 + 1
= 1.0000x108

Double precision:
1.0000x108 + 1 
= 1.00000001x108



www.clearspeed.com Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. 
28

We may need to rethink 64-bit flops…
• Every operation has an optimum number of bits of 

accuracy
– Using too few gives unacceptable errors
– Using too many wastes memory, bandwidth, joules, dollars.

• It is unlikely that a code uses just the right amount of 
precision needed.

0

16

32

48

64

80
IEEE 754 double precision

Optimum precision

All floating-point operations in application
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How do HPC programmers pick FP precision?

• Assume 64-bit is plenty, and use it everywhere.

• Use what is imposed by hardware (word size).

• Try two precisions; if answers agree, use the less 
precise one, otherwise use the more precise one.

• Compare computed answer for special cases where an 
analytic answer is known.

• Compare computed answer with physical experiment 
(rare).

• Perform careful analysis (very rare).
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Can a tool estimate joules, W, $, min. precision?

a(i,j) -= a(i,k) * a(k,j)

Tier 0 read/write
28 pJ
$2x10–15

Tier 1 read
50 pJ
$8x10–14

64-bit op
42 bits needed
10 pJ
$1x10–15

Tier 2 read
1900 pJ
$5x10–13

64-bit op
39 bits needed
12 pJ
$1x10–15

Cost and electrical power and precision are almost as 
important as timing… why not develop analysis tools for 
them? You can only optimize what you can measure.
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Model/measure power use, not just performance

Base System: HP DL380 G5, Intel Xeon 5160 x 2 @ 3GHz, 14GB

Standard Cluster Power Consumption / Node
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430.6
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Accelerated Cluster Node

Base System: HP DL380 G5, Intel Xeon 5160 x 2 @ 3GHz, 14GB
Accelerated System:  As above + 1 ClearSpeed Advance X620

Accelerated Cluster Power Consumption / Node
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w
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ts

Average Power Consumption: 437.5 watts

437.5
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Energy Usage: Standard vs. Accelerated

Base System: HP DL380 G5, Intel Xeon 5160 x 2 @ 3GHz, 14GB
Accelerated System:  As above + 1 ClearSpeed Advance X620

Comparative Cluster Power Consumption / Node
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42 Minutes

w
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ts

Standard Cluster Node CS Accelerated Node

53.6% Less Energy Used
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AMBER 9 acceleration

• Model: memory motion is k1N, operations are 
k2N2. Overheads easily overcome for typical N.

• ~4x speedup for pharmaceutical company 
production runs achieved recently.

• 225 hour (Opteron) run reduced to 58 hours
• Didn’t exploit symmetry of i j forces, which will 

give another ~1.5–1.9x speedup (31–39 hours)
• Solvation model GB1; 500000 time steps
• Correctness checked incrementally throughout 

conversion process. 
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NAB and AMBER 10 acceleration

• Newton-Raphson refinement now possible; 
analytically-computed second derivatives

• 2.6x speedup obtained for this operation in 
three hours of effort (no source code changes)

• Enables accurate computation of entropy and 
Gibbs free energy for first time.

• Available now in NAB (Nucleic Acid Builder) 
code. Slated for addition to AMBER 10.
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Plug-and-play quantum chemistry acceleration?

• DGEMM content is 18% to 65% in GAUSSIAN 
test suite, but typical sizes only ~10 to 100.

• No changes to license or to any of the source 
code. Just invoke dynamic linking option in 
makefile.

• Sample GAUSSIAN tests to date are too small
to accelerate; below N = 576 threshold.
– Need larger problem sizes
– Realistic to be that large? (Lots of occupied orbitals)

• PARATEC, Qbox much better candidates. Plane 
wave models are over half DGEMM, huge 
dimensions
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The economics of CAE acceleration

• Each host costs $3,000.
• Software license costs 

~$30,000 per core, which 
discourages use of multiple 
cores.

• MCAE engineer costs over 
$200,000/year.

• In California, anyway.
• Accelerator card would be 

cost-effective even with a 
7% performance boost. 
Actual performance boost 
should be more like 260% 
for large problems.

Structural Analysis
ANSYS, LS-DYNA implicit
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Accelerating ANSYS, LS-DYNA with Lucas’ solver

• Potentially pure plug-and-play
• No added license fee
• Needs ClearSpeed’s 64-bit 

precision and speed
• Enabled by recent DGEMM 

improvements; still needs 
symmetric ATA variant

• Could enable some CFD 
acceleration (for codes based 
on finite elements, low 
Reynolds numbers`)

10 million degrees of freedom (sparse)

becomes…

50,000 dense
equivalent

Accelerator can solve
at over 50 GFLOPS

Est. 260% net 
application
acceleration

Non-solver
Solver setup

DGEMM
on x86

host Non-solver
Solver setup
DGEMM
with ClearSpeed

10x
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PAM-CRASH and MATLAB acceleration

• Work done in China shows 1.40x PAM-CRASH 
speedup using one ClearSpeed accelerator

• We await details; this is preliminary
– Problem size?
– Explicit or implicit?
– What was done to the code?
– Compared to what host?

• Japanese industrial researcher got 5x 
acceleration of MATLAB waveguide model; 
won’t allow publication of results (?)

• *sigh* So we continue citing TOP500 results…



www.clearspeed.com Copyright © 2007 ClearSpeed Technology Inc. All rights reserved. 
40

Summary

• Accelerator tuning demands attention to 
memory bandwidth at all levels (bandwidth to 
host, less so)

• Now seeing value for real 64-bit applications 
in chemistry, electromagnetics, financial 
modelling, crash codes, etc.

• Fit-for-purpose analysis starts with analytical 
model based on memory tiers, but is verified 
using detailed performance tools.
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