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| ' Outline of the Presentation

« Background and perspectives of predictive capability

* Proposed perspective
« Validation metrics and predictive uncertainty

 Closing Remarks

Work in collaboration with Marty Pilch and Tim Trucano, SNL,

and Scott Ferson and Jon Helton, consultants.
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Progress in Computer Speed
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r .o’ How do We Measure Progress in

Predictive Capability?

* By the number of finite elements/volumes we have in a
simulation?

* By the number of atoms/molecules we have in a simulation?

* By the size of the vortices we can resolve in a turbulent flow
simulation?

* | contend that predictive capability for a system should be
measured by how well we answer the questions posed by
Kaplan and Garrick (1981):

— What can go wrong?
— How likely is it to happen?
— What are the consequences?

* And “What is the maturity of numerical simulation activities?”
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3 _,9/ Our View of the Elements
' Contributing to Predictive Capability

* |dentification of the scenarios, or initiating events, under
which the system must operate, perform, fail safe, etc

* Fidelity of modeling of the physics, geometry, initial
condition, boundary conditions, etc

* Completeness of the software quality and code verification
activities

* Quantification of numerical accuracy of the discretized
solutions

* Assessment of the accuracy of the simulation results by
comparison with experimental measurements

* Estimation of the uncertainty in system responses due to all
plausible sources of uncertainty

* Understanding the sensitivities of the system responses to
all sources of uncertainty
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Predictive Capability Maturity Model

(Pilch, Oberkampf, Trucano)

ATTRIBUTE

Maturity Level 0
Low Consequence,
Minimal M&S Impact,
£.9. Scoping Studies

Maturity Level 1
Moderate Consequence,
Some M&S Impact,
€.9. Design Support

Maturity Level 2
High-Consequence,
High M&S Impact,
£.9. Qualification Support

Maturity Level 3

High-Consequence,
Decislon-Making Based on M&S,
€.9. Qualification or Certification

Representation and
Geometric Fidelity

Are important features neglected
because of simplifications or

« Judgment only

Little or no
representational or
geometric fidelity for
the system and BCs

Significant simplification
or stylization of the
system and BCs
Geometry or
representation of major

Limited simplification or stylization of
major components and BCs
Geometry or representation is well
defined for major components and
some minor components

Essentially no simplification or stylization
of components in the system and BCs
Geometry or representation of all
components is at the detail of “as built”,
e.g., gaps, material interfaces, fasteners,

stylizations? components is defined welds, adhesive bonding, surface finish
* Model forms are either Some models are * Physics-based models for all * All models are physics-based
Physics and Material unknown or physics-based and are important physics * Minimal need for calioration using SETs,
Model Fidelity completely empirical calibrated using data « Significant calibration needed using and |IETs,

How fundamental are the physics
and material models and what is
the level of model callbration?

Few, if any, physics-
informed models

« No coupling of models

from related systems
Minimal or ad hoc
coupling of models

Separate Effects Tests (SET) and
Integral Effects Tests (IET)
One-way coupling of models

Sound physical basis for extrapolation
and coupling of models
Full, two-way, coupling of models

Code Verification

Are software errors and algorithm

Judgment only
Minimal testing of any
software elements

Most codes managed by
SQE procedures
Unit and regression

All codes managed by SQE
procedures
Verification test suites regularly

SQE procedures reviewed by
independent, external panel
Test suites conducted for all important

deficlencles corrupting the « Little or no SQE testing conducted with used for key algorithms and algorithms, all important F&Cs used, all
simulation resuits? procedures specified significant code coverage of key Features & important coupled physics, and all
or followed coverage Capabilities (F&C) used important coupled codes
* Judgment only Effect of numerical errors | Numerical effects are quantitatively |« Numerical effects are guantitatively

Solution Verification
Are human procedural errors or
numerical solution errors
corrupting the simulation resuits?

Numerical errors have
an unknown or large
effect on simulation
results

and parameters is small
for some relevant SRQs
Inputioutput verified only
by the analysts

estimated to be small on most
relevant SRQs

Some input/output data verified by
experts internal to the organization

estimated to be small on all important
SRQs for all codes and code couplings
All input/output data verified by
independent, external experts

Model Validation

How accurate are the simulation
results at varlous tlers Ina
validation hlerarchy?

Judgment only
Few, if any,
comparisons with
measurements from
similar systems

Quantitative assessment

of accuracy of SRQs not
directly relevant to the
application of interest

Large or unknown gxper-

imental uncertainties

Quantitative assessment of
predictive accuracy for some key

SRQAs from JETs and SETs,

Experimental uncertainties are well
characterized for most SETs, but
poorly known for |ETs,

Quantitative assessment of predictive
accuracy for all important SRQs from
IETs and SETs at conditions/geometries
directly relevant to the application
Experimental uncertainties are well
characterized for all IETs and SETs,

Uncertainty
Quantification

and Sensitivity

Analysis
What Is the Impact of variabllities
and uncertainties on system

performance and margins?

Judgment only

Only deterministic
analyses conducted
for system margins
Informal “what if”

analyses conducted
for system margins

Aleatory and epistemic
(A&E) uncertainties
represented and
propagated without
distinction

Sensitivities to some
uncertainties and
conditions are explored

A&E uncertainties segregated,
propagated and properly interpreted
Quantitative sensitivity analyses
conducted for some uncertainties
Some environments and scenarios
of the system are analyzed

Minimal estimation of margins due
to extrapolation of models

A&E uncertainties due to all plausible
environments and scenarios of the
system are analyzed

Comprehensive sensitivity analyses
conducted for parameters and models
Extensive estimation of system margins
due to extrapolation of models and
physics-coupling effects
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Approaches
to Predictive Capability

* Traditional (risk assessment) approach:
— Characterize all sources of uncertainty, aleatory and epistemic
— Calibrate deterministic model parameters

— Use the model to extrapolate in space, time, boundary conditions,
forcing functions, loading conditions, etc. to the application of
interest

* Bayesian approach:
— Assume prior distributions for uncertain parameters in the model

— Update the prior distributions for uncertain parameters using
available experimental data and Bayes formula

— Use the updated parameters in the model to make predictions for
the application of interest
— Disadvantages:
 Assumes the key issue is calibrating parameter distributions
 Assumes the model form is accurate
* Is computational very expensive
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}I Interpolation: Application Domain

Within the Validation Domain
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Proposed Perspective
to Predictive Capability

* Characterize all of the uncertainties:
— Aleatory: inherent variation associated with the parameter
— Epistemic: uncertainty due to lack of knowledge of the quantity

* Calibrate uncertain model parameter distributions before model
validation activities

* Assess the model accuracy by quantitative comparisons with
experimental validation data, i.e., compute a validation metric

* Use the model to extrapolate to the application of interest:

— Extrapolate in space, time, boundary conditions, forcing functions,
loading conditions, etc. to the application of interest

— Model-form inaccuracies directly estimated from validation experiments

* Advantages over traditional and Bayesian approaches:
— Proven to be very effective in identifying weaknesses in models

— Better able to estimate model-form uncertainty when using the model:
» Far from the conditions of the validation experiments
 When the complete system can not be tested
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Large Extrapolation Beyond
the Validation Domain
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} Example of Extrapolation Within a

Validation Hierarchy (Weapon in a Fire)

Deployed System

Full System

Components

Separable
Effects
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Desirable Validation Metric Characteristics

¢ \Validation metric is a measure of the mismatch between the
model prediction and the experimental data

* Should be a statistical “distance” between the distribution of
the prediction and distribution of the experimental data

* Should be expressed in physical units, not normalized relative
to some statistical measure

* Should not mix calibration of the model and accuracy
assessment of the model

* Should be sensitive to how many function evaluations
(numerical solutions to the computational model) are available

* Would be very useful if the validation metric could be
computed when only one experimental realization is available
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Typical Method of Comparison
of Computation and Experimental Data
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Compare the Simulation and Data
Using the Cumulative Distribution Function

1~  Time =1000 sec
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Validation Metric Reflects the

Difference Between the Full Distributions

Probability

Probability

Probability

Matches in mean

Both mean and variance

Matches well overall

10

15

Sandia
15 @ National
Laboratories



Why Require Physical Units
for the Validation Metric?

Probability
o
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The simulation on the left is much
closer to the experimental data
than the simulation on the right
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Effect of Few Function Evaluations
on the Validation Metric
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Single Observation (two of them)
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* A single datum can never match the entire predicted distribution, d # 0

* Single datum has a minimum value of d when it matches the median of

the predicted distribution
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Propagation of Uncertainties

Propagation of uncertainties

through the model
Scenarios
Physics parameters =g System response
) quantities of interest
Geometry — System of PDE’s I——

i g and sub-models
/ Initial conditions =% (Model form uncertainty)

Boundary conditions =i

Environments

The propagation of uncertain input quantities through a
mathematical model to obtain outputs can be written as

y — f('i?a, '_x’e)
— Vis a system response quantity of interest

— f is the mathematical model of the physical process of interest
= X, X5, X, IS the vector of all aleatory uncertainties
=X Am+25" "X, is the vector of all epistemic uncertainties
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Prediction with Extrapolation
of Aleatory and Epistemic Uncertainties
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* The model form
uncertainty is
represented as the
magnitude of the

validation metric d

°*d is treated as an

epistemic uncertainty
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Concluding Remarks

* Bayesian estimation improvements needed:

— Develop better methods to separate parameter estimation and
model bias error identification

— Develop methods to better estimate uncertainty in predictions

* Improvements needed in the present approach:

— Improve methods for extrapolation of the validation metric, d

— Devise methods for estimating the uncertainty due to physics
couplings that have not been assessed by experimental validation

* \We must continue to find ways of testing our predictive
capability by “blind” comparisons with experiments
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