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Outline of the Presentation

• Background and perspectives of predictive capability

• Proposed perspective

• Validation metrics and predictive uncertainty

• Closing Remarks

Work in collaboration with Marty Pilch and Tim Trucano, SNL,

and Scott Ferson and Jon Helton, consultants.
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Progress in Computer Speed

ASC

begins
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How do We Measure Progress in

Predictive Capability?

• By the number of finite elements/volumes we have in a

simulation?

• By the number of atoms/molecules we have in a simulation?

• By the size of the vortices we can resolve in a turbulent flow

simulation?

• I contend that predictive capability for a system should be

measured by how well we answer the questions posed by

Kaplan and Garrick (1981):

– What can go wrong?

– How likely is it to happen?

– What are the consequences?

• And “What is the maturity of numerical simulation activities?”
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Our View of the Elements

Contributing to Predictive Capability
• Identification of the scenarios, or initiating events, under

which the system must operate, perform, fail safe, etc

• Fidelity of modeling of the physics, geometry, initial
condition, boundary conditions, etc

• Completeness of the software quality and code verification
activities

• Quantification of numerical accuracy of the discretized
solutions

• Assessment of the accuracy of the simulation results by
comparison with experimental measurements

• Estimation of the uncertainty in system responses due to all
plausible sources of uncertainty

• Understanding the sensitivities of the system responses to
all sources of uncertainty
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Predictive Capability Maturity Model

(Pilch, Oberkampf, Trucano)
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Approaches

to Predictive Capability

• Traditional (risk assessment) approach:

– Characterize all sources of uncertainty, aleatory and epistemic

– Calibrate deterministic model parameters

– Use the model to extrapolate in space, time, boundary conditions,
forcing functions, loading conditions, etc. to the application of
interest

• Bayesian approach:

– Assume prior distributions for uncertain parameters in the model

– Update the prior distributions for uncertain parameters using
available experimental data and Bayes formula

– Use the updated parameters in the model to make predictions for
the application of interest

– Disadvantages:

• Assumes the key issue is calibrating parameter distributions

• Assumes the model form is accurate

• Is computational very expensive
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Interpolation: Application Domain

Within the Validation Domain
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Proposed Perspective

to Predictive Capability

• Characterize all of the uncertainties:

– Aleatory: inherent variation associated with the parameter

– Epistemic: uncertainty due to lack of knowledge of the quantity

• Calibrate uncertain model parameter distributions before model

validation activities

• Assess the model accuracy by quantitative comparisons with

experimental validation data, i.e., compute a validation metric

• Use the model to extrapolate to the application of interest:

– Extrapolate in space, time, boundary conditions, forcing functions,

loading conditions, etc. to the application of interest

– Model-form inaccuracies directly estimated from validation experiments

• Advantages over traditional and Bayesian approaches:

– Proven to be very effective in identifying weaknesses in models

– Better able to estimate model-form uncertainty when using the model:

• Far from the conditions of the validation experiments

• When the complete system can not be tested
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Large Extrapolation Beyond

the Validation Domain
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Example of Extrapolation Within a

Validation Hierarchy (Weapon in a Fire)



12

Desirable Validation Metric Characteristics

• Validation metric is a measure of the mismatch between the

model prediction and the experimental data

• Should be a statistical “distance” between the distribution of

the prediction and distribution of the experimental data

• Should be expressed in physical units, not normalized relative

to some statistical measure

• Should not mix calibration of the model and accuracy

assessment of the model

• Should be sensitive to how many function evaluations

(numerical solutions to the computational model) are available

• Would be very useful if the validation metric could be

computed when only one experimental realization is available
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Typical Method of Comparison

of Computation and Experimental Data
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Compare the Simulation and Data

Using the Cumulative Distribution Function
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Validation Metric Reflects the

Difference Between the Full Distributions
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Why Require Physical Units

for the Validation Metric?

The simulation on the left is much

closer to the experimental data

than the simulation on the right
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Effect of Few Function Evaluations

on the Validation Metric
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Single Observation (two of them)
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• Single datum has a minimum value of d when it matches the median of
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Propagation of Uncertainties

The propagation of uncertain input quantities through a

mathematical model to obtain outputs can be written as

– y is a system response quantity of interest

– f  is the mathematical model of the physical process of interest

–                               is the vector of all aleatory uncertainties

–                                       is the vector of all epistemic uncertainties

 
y = f (xa , xe )

 
xa = x1, x2 , xm
 
xe = xm+1, xm+2 , xn
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Prediction with Extrapolation

of Aleatory and Epistemic Uncertainties

• The model form

uncertainty is

represented as the

magnitude of the

validation metric d

•d is treated as an

epistemic uncertainty
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Concluding Remarks

• Bayesian estimation improvements needed:

– Develop better methods to separate parameter estimation and

model bias error identification

– Develop methods to better estimate uncertainty in predictions

• Improvements needed in the present approach:

– Improve methods for extrapolation of the validation metric, d

– Devise methods for estimating the uncertainty due to physics

couplings that have not been assessed by experimental validation

• We must continue to find ways of testing our predictive

capability by “blind” comparisons with experiments


