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Key Messages

e Technology scaling continues according o Moore's Law
- 2X increase in functionality every 2 years

- In the form of cores, integrated functionality or both
- 65nm in 2005, 45nm 2007, 32nm 2009

e Technology & Reliability Challenges are many, but so are
the opportunities
- Many new device types and materials
- A challenge as well as an opportunity

e High RAS will require global fault management strategies
along with robust circuit design
- Better understanding needed on RAS requirements
- Research and Cost effectiveness of proposed options
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Technology scaling on a 2 Year Cycle
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Moore's Law Delivers Value to the End User
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Twice the functionality at the same cost every 2 years
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Performance/ Watt
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Lead'in 45nm Technology and Products
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0.346 um? cell
Core™2 family processor 119 mm2 chip size

410/820 M transistors (2C/4C) >1B trapsistors
World’s first working 45 nm CPU Functional in Jan 2006
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45'nm Yield Improvement Trend

Defect density (log scale)
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Excellent Yield learning and good reliability too
On track for production ramp in 2H ‘07
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SRAM cCell Size Trend
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The trend continues
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High-kK*Metal Gate Transistors

Integrated 45 nm
CMQOS process

High performance

Low leakage

Meets reliability
requirements

Manufacturable
In high volume

High-k vs. SiO,

Capacitance

60% greater

Faster
transistors

Gate
Leakage

>100x
reduction

Cooler chips
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Very*High Innovation Rate

Materials

HighK-MG Xtorsifor performance & Low Power
LowK ILDs for interconnect
Novel materials for strain and electrical Pformance

Transistor
Architecture

Novel transistor architectures for HighK-MG
TriGate Xtors and III-V integration in the future

Chip
Architecture

Efficient Performance/Power with CoreTM2
MultiCore
Monolythic integration of Graphics, Mem. Controller etc.

Platform
Integration

Power & form factor optimization
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ManyaReliability Challenges

Increased Electric Fields

The shrinking V, .-V in Window

The development of robust High K/ Metal Gate transistors
Dimensional scaling of interconnects and their liners
Thermo-Mechanical limitations of very LowK ILDs

Soft Errors

Defectivity with scaled technology

Transient and intermittent errors

Fault tolerance

Innovation needed more than ever
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Gate Dielectric Field Trend
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Substantial increases in Efield enabled by HK/MG
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Vi o Vinin Window: challenge

Vmax-Vmin trend
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Transistor variability impacts Vmin
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 Due to random dopant fluctuation and other process parameters
 Develop design techniques that can handle variability

Salishan HPC 2007, J. Maiz



Vi impacted by bit count

Defective bits vs Voltage

Increased
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e Impacted by variability and defectivity

e TImproved process and cell upsizing helps

Need Robust manufacturing process now and Fault
Tolerance technigues in the future
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Transistor degrades during use
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e Slow but continuous process

e Addressed by variation tolerant design and Frequency
Guardbands at test
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does Product operating frequency

Fmax degradation in Burn-in
End of life
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Test Guardbands used to eliminate customer
impact
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Transistor degradation

PMOS NBTI degradation

Efield increases
with scaling

Process
Improvement
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Process improvements are a must to counter the
effect of increased E fields
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Transistor architecture & materials
are changing

e Many new materials

- HighK/Metal Gates for gate leakage control and performance
scaling = Integration and reliability challenges

- Low K ILDs =» Thermomechanical risk may slow their
introduction

- Lead free Bumps

e Clever changes in planar transistors
- Strain, epiaxial Source/ Drain layers

e Novel Transistor architectures like tri-gate
e Exotic options explored: from Carbon Nanotubes and
semiconductor nanowires to ITI-V compounds
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Tri-Gate Transistors

Source Gate Drain Gate Oxide

lChanneI

* Transistor gate wraps around 3 sides of Si channel (Tri-Gate)

 Transistor channel is “fully depleted”, unlike normal bulk CMOS

 Fully depleted operation reduces leakage current by up to 10x
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Increasing Electron Mobility

n-Mobility Compound Semiconductors
Si GaAs INAs InSb
1 8 33 10)

Increased electron mobility leads to higher
performance and less energy consumption

e The challenge is integrating them with Silicon
and improving Hole mobility

Intel Developer
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Scdling of the interconnect

Cu Resistivity vs Line Width
\
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e Effective resistivity increase due to:

- Cross section reduction due to barriers
- Increased scattering from grain boundaries and surfaces

Tough but manageable challenges
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Single Event Upsets

e Transient errors that corrupt data but doinot
produce permanent damage (on limited doses)

- Charge burst that overwhelms a storage node

e o particles in materials and atmospheric
neutrons in terrestrial systems

e Cosmic rays and heavy nuclei in space
- Orders of magnitude higher fluxes than at sea level

e This is just one class of transient errors

- Others are noise related fails in the interconnect
fabric etc.
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Single Event Upsets: Cache cell
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e SEU errors due to neutrons from cosmic rays and o particles from
residual impurities

e Reduction in charge collection dominates over reduction in critical
charge
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Single; event upsets: Multi-bit fails

Cache cells
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e Multi-bit errors are increasing as a proportion of fails
e Expected consequence of increased charge sharing
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Single Event Upsets: Logic latches

latch SEU Trend
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e Similar trend starting for latches
e 45 nm results still preliminary
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Single Event Upset: Chip impact

SEU Trend
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e Saturation for cache arrays
e Getting there for logic. Perhaps in 32nm
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Circuit contributions to SEU ina
typical microprocessor

Static
combinational
logic

Residual
Unprotected
memory
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Many protection options proposed

e Adding Parity/ ECC to logic arrays and Register Files
e Replication of functional units or cores

e Lock-step for cores or complete chips

e Residue Checking

e Redundant multithreading

e Fingerprinting

e Modified Scan latches

e Hardening of worst contributing latches

What is the goal that we are trying to meet?
What is the value proposition for HPC?
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Recap of fail types & trends

Fail type Trend Solution space

Hard Fails Flat e Continued Process improvements
Architectural fault tolerance(2)
Continued Process improvements

o
o
e Guard-bands

e Architectural fault tolerance
o

o

o

o

Parametric Increasing
degradation

Intermittent Continued process improvement
Architectural fault tolerance(2)
Continued Process improvements
Guard-bands

e Architectural fault tolerance (1)
Transient Increasing | e Improved estimation methodology

(Ionizing Rad) to flat e Hardening of critical elements

e Architectural fault tolerance (1)

Transient Increasing
(noise)

(1) Such as EDAC: (local circuit, component or system level)
2) Requires self-diagnhostics and redundancy
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Fault Tolerance trends/ needs

e Conservatism in technology to eliminate errors to Many
Sigma will cut into performance

e Fault Tolerant schemes will allow few errors to occur by
providing the means to detect and correct

- Minimal to no impact to the customer

e The continuation of Moore's Law makes transistor
availability plentiful and enables a much broader thinking
in Fault Tolerance

- Local Circuit and functional circuit block level
- Multi/ Mary core availability

- Complement hardware /chip strategies with Platform system
strategies
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Help needed from HPC experts

e What are the RAS Requirements for various
categories and uses of HPC?

- Are there agreed targets that can guide us?
- Can a $ value be assigned to them?

e How can System architecture and Software
help and complement the effort at the
component level?
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Key Messages

e Technology scaling continues according o Moore's Law
- 2X increase in functionality every 2 years

- In the form of cores, integrated functionality or both
- 65nm in 2005, 45nm 2007, 32nm 2009

e Technology & Reliability Challenges are many, but so are
the opportunities
- Many new device types and materials
- A challenge as well as an opportunity

e High RAS will require global fault management strategies
along with robust circuit design
- Better understanding needed on RAS requirements
- Research and Cost effectiveness of proposed options
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intel.

Leap ahead™
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