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The Problem

Current PFS solutions do not provide scalable I/O
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Lustre, PVFS2, Panasas, and most others use this model

General-purpose file systems have too much functionality
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Motivating Example: Checkpoint
Required Operations
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“Why don’t we just allocate the 
disks to the application?”

“Why don’t we just allocate the 
disks to the application?”
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The Lightweight Approach
Get out of the way!
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LWFS Architecture
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• Authentication Server
– Use standard mechanisms (e.g., GSS-

API) to create/verify credentials
– Credentials are transferable
– Distributed at app launch

• Authorization Server
– Manages access-control policies
– Creates/verifies capabilities

• Coarse grained access controls 
(containers)

– Capabilities are transferable
– “Immediate” revocation

• Storage Servers
– Object interface (blobs of bytes)
– Enforce access-control policy

• Cache capabilities
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Efficient Data Movement

Server-Directed I/O

• Goals
– Relieve stress on the servers
– Make efficient use of network

• avoid copies, dropped messages, 
retransmissions, …

• Features
– Asynchronous, RPC-like, API
– Layered on top of Portals

• RDMA, OS-bypass, …
– Small requests
– Bulk data transferred by server

• Writes: pull from client
• Reads: push to client
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Implementation Status

• LWFS-core APIs
– Storage service is complete.

• Uses Unix files to represent stored objects. 
– Authorization service is complete

• Uses OpenSSL to generate/verify caps
• Uses Sleepycat DB to manage ACLs

– Authentication service is in progress
• Uses Kerberos (through GSS-API) to verify 

identities associated with credentials. 
• not needed for a prototype.
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Implementation Status (continued)

•Support APIs
– Portals-enabled RPC (our own RPC implementation) 

• communication mechanism used by all services.
• Asynchronous API
• SUN-XDR for portable data format for control messages.
• Separate control and data paths. 

– Naming service is complete
• Uses Sleepycat DB to manage a directory-based 

namespace.
– Transactions (Locks and Journals)

• APIs defined
• Implementation in progress
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LWFS vs. Lustre: File/Object Creation
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LWFS vs. Lustre: Checkpoint Throughput
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Proposed Efforts to Extend LWFS
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-SciDIT ($300K): General framework for programmable I/O partition with LWFS.
-!CRASH ($500K): Leverage LWFS and SciDIT for fault tolerance.
-HECURA: Intermediate nodes to enforce data consistency and QoS.
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Other Future Work 

• Experimentation at Scale 
– We need to work with production folks to get LWFS on Red 

Storm.

• Application Integration (target libraries)
– LWFS/SYSIO integration
– LWFS/Exodus II integration
– Other libraries: MPI-IO, SAF, HDF-5
– Linux Client VFS (in kernel space)

• Extending LWFS
– Scalable Namespace Management
– POSIX semantics on LWFS
– Extending LWFS to provide application-specific policies

• Caching, prefetching to match access patterns



13

Summary

• The lightweight approach shows promise
– Only do what you have to do. 
– Put the burden on the library, not the file system.
– Provides a good research vehicle
– Provides a basis for production-level file system and I/O-efficient 

libraries

• LWFS has momentum
– Progress on FY’06 goals
– We are a key player in 3 SciDAC-2 proposals
– General acceptance from the community

• Need more results and publications!


