
Lightweight I/O for Scientific Applications
SAND Number: 2006-2454C

SalishanSalishan Conference on HighConference on High--Speed ComputingSpeed Computing

April, 2006

Sandia
Ron Oldfield, Lee Ward, Rolf Riesen

UNM
Barney Maccabe, Patrick Widener, Sarala Arunagiri

Hewlet Packard
Todd Kordenbrock

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

2

The Problem

Current PFS solutions do not provide scalable I/O

Metadata Management

file layout

naming

file
attributes

Consistency
Semantics

I/O Interface

Distribution
Policy

ownership
& permsAccess

Control
Policy

Resource
Management

File System

Lustre, PVFS2, Panasas, and most others use this model

General-purpose file systems have too much functionality

3

Motivating Example: Checkpoint
Required Operations

nO(nm)O(nm)write

n+1m+1n(1+m)create

LWFS
1 file
n objs

PFS-2
1 file
m objs

PFS-1
n files
nm objs

C
om

pu
te

 N
od

es
 (n

)

I/O
 N

od
es

 (m
)

Metadata Management
file layout

file
attributes

Consistency
Semantics

I/O Interface

Distribution
Policy

File System

LWFSPFS-1PFS-2

naming

ownership
& permsAccess

Control
Policy

Resource
Management

naming

ownership
& permsAccess

Control
Policy

Resource
Management

Throughput on Darkstar

0
200
400
600
800

1000
1200

0 20 40 60 80
nodes

M
B

/s
ec

write strided Peak
 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

op
s/

se
c)

Number of Client Processes

Lustre create performance (m stripes per file)

2 OSTs (m)
4 OSTs (m)
8 OSTs (m)

16 OSTs (m)
28 OSTs (m)

Throughput on Darkstar

0
200
400
600
800

1000
1200

0 20 40 60 80
nodes

M
B

/s
ec

write shared
write strided
Peak

...

“Why don’t we just allocate the
disks to the application?”

“Why don’t we just allocate the
disks to the application?”

Throughput on Darkstar

0
200
400
600
800

1000
1200

0 20 40 60 80
nodes

M
B

/s
ec

write shared
write strided
LWFS
Peak

4

The Lightweight Approach
Get out of the way!

Libraries Provide
Everything else

file layout

naming

file
attributes

Consistency
Semantics

I/O Interface

Distribution
Policy

ownership
& perms

Access
Control
Policy

Resource
Management

Lightweight File System

Metadata

Libraries

Metadata

LWFS Provides
Scalable Access Control
Direct Access to Storage
Efficient Data Movement

5

LWFS Architecture

ClientClient

ClientClient

ClientClient

ClientClient

ClientClient

App
Launch
App

Launch

OBDOBD
OBDOBD

OBDOBD

Storage
Server

Storage
Server

OBDOBD
OBDOBD

OBDOBD

Storage
Server

Storage
Server

OBDOBD
OBDOBD

OBDOBD

Storage
Server

Storage
Server

Authorization
Server

Authorization
Server

Authentication
Server

Authentication
Server

operation
(capability)

verify
capability

verify
credential

request
capability

capabilitycr
ed

en
tia

l

authenticate

credential

server-initiated
client-initiated

• Authentication Server
– Use standard mechanisms (e.g., GSS-

API) to create/verify credentials
– Credentials are transferable
– Distributed at app launch

• Authorization Server
– Manages access-control policies
– Creates/verifies capabilities

• Coarse grained access controls
(containers)

– Capabilities are transferable
– “Immediate” revocation

• Storage Servers
– Object interface (blobs of bytes)
– Enforce access-control policy

• Cache capabilities

6

Efficient Data Movement

Server-Directed I/O

• Goals
– Relieve stress on the servers
– Make efficient use of network

• avoid copies, dropped messages,
retransmissions, …

• Features
– Asynchronous, RPC-like, API
– Layered on top of Portals

• RDMA, OS-bypass, …
– Small requests
– Bulk data transferred by server

• Writes: pull from client
• Reads: push to client

Client Server

request

request
queue

data

OSD

data
buffers

write
request

pinned

server-initiated
client-initiated

ok

A

B

C

D

A

B

C

D

7

Implementation Status

• LWFS-core APIs
– Storage service is complete.

• Uses Unix files to represent stored objects.
– Authorization service is complete

• Uses OpenSSL to generate/verify caps
• Uses Sleepycat DB to manage ACLs

– Authentication service is in progress
• Uses Kerberos (through GSS-API) to verify

identities associated with credentials.
• not needed for a prototype.

8

Implementation Status (continued)

•Support APIs
– Portals-enabled RPC (our own RPC implementation)

• communication mechanism used by all services.
• Asynchronous API
• SUN-XDR for portable data format for control messages.
• Separate control and data paths.

– Naming service is complete
• Uses Sleepycat DB to manage a directory-based

namespace.
– Transactions (Locks and Journals)

• APIs defined
• Implementation in progress

9

LWFS vs. Lustre: File/Object Creation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

op
s/

se
c)

Number of Client Processes

Lustre File Creation

2 servers (m)
4 servers (m)
8 servers (m)

16 servers (m)
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

op
s/

se
c)

Number of Client Processes

LWFS Object Creation

1 servers (m)
2 servers (m)
4 servers (m)
8 servers (m)

16 servers (m)

LWFS Creates Objects in Parallel

Note: Y-axes are different scales

10

LWFS vs. Lustre: Checkpoint Throughput

...

C
om

pu
te

 N
od

es
 (n

)

I/O
 N

od
es

 (m
)LWFS

... I/O
 N

od
es

 (m
)PFS-1PFS-2

C
om

pu
te

 N
od

es
 (n

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Number of Client Processes

LWFS Checkpoint Performance (one object per process)

16 servers
8 servers
4 servers
2 servers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

M
B

/s
ec

)
Number of Client Processes

LWFS Checkpoint Performance (one object per process)

16 servers
8 servers
4 servers
2 servers
1 servers

11

Proposed Efforts to Extend LWFS

OBDOBDStorage
Server

Storage
Server OBDOBD

OBDOBD

OBDOBDStorage
Server

Storage
Server OBDOBD

OBDOBD

OBDOBDStorage
Server

Storage
Server OBDOBD

OBDOBD

Off-line Processing
(apply structure, data conversion,

extraction, remote transport, permutation)

ClientClient

ClientClient

ClientClient

ClientClient

ClientClient

Compute Partition

Application

Raw Data

I/OI/O

I/OI/O

I/OI/O

I/OI/O

I/O Partition

Raw Data Processed
Data

In-line Processing
(buffer, transform, permute, filter, …)

-SciDIT ($300K): General framework for programmable I/O partition with LWFS.
-!CRASH ($500K): Leverage LWFS and SciDIT for fault tolerance.
-HECURA: Intermediate nodes to enforce data consistency and QoS.

12

Other Future Work

• Experimentation at Scale
– We need to work with production folks to get LWFS on Red

Storm.

• Application Integration (target libraries)
– LWFS/SYSIO integration
– LWFS/Exodus II integration
– Other libraries: MPI-IO, SAF, HDF-5
– Linux Client VFS (in kernel space)

• Extending LWFS
– Scalable Namespace Management
– POSIX semantics on LWFS
– Extending LWFS to provide application-specific policies

• Caching, prefetching to match access patterns

13

Summary

• The lightweight approach shows promise
– Only do what you have to do.
– Put the burden on the library, not the file system.
– Provides a good research vehicle
– Provides a basis for production-level file system and I/O-efficient

libraries

• LWFS has momentum
– Progress on FY’06 goals
– We are a key player in 3 SciDAC-2 proposals
– General acceptance from the community

• Need more results and publications!

