
Salishan FY06

HPC I/O and File Systems, is
everyone out to get us?

Gary Grider, LANL

LA-UR-06-1122

02/2006

Salishan FY06

What drives us?
•Provide reliable, easy-to-use,
high-performance, scalable, and
secure, I/O
•Via standard and other interfaces

•MPI-IO, POSIX, etc.

Archive

Site
Backbone

Past
Gener-
ation
ASCI

Platform

Current
Gener-
ation
ASCI

Platform

Disk Rich
Supercomputer

Disk Rich
Supercomputer

Balanced System Approach

Disk Poor
Clients

Diskless
Clients

Object
Archive

cluster
File

System
Gateways

Scalable
OBFS

Job
Queue

BackBon
e

cluster

cluster

cluster

cluster

cluster

cluster

cluster

Enterprise
Global FS

Salishan FY06

Requirements Summary

Salishan FY06

FS Requirements Summary
From Tri-Lab File System Path Forward RFQ (which came from the Tri-
labs file systems requirements document)
ftp://ftp.lanl.gov/public/ggrider/ASCIFSRFP.DOC

• POSIX-like Interface, Works well with MPI-IO, Open
Protocols, Open Source (parts or all), No Single Point
Of Failure , Global Access

• Global name space, …
• Scalable bandwidth, metadata, management, security

…
• WAN Access, Global Identities, Wan Security, …
• Manage, tune, diagnose, statistics, RAS, build,

document, snapshot, …
• Authentication, Authorization, Logging, …

Salishan FY06

FS Requirements Detail

3.1 POSIX-like Interface
3.2 No Single Point Of Failure
4.1 Global Access

• 4.1.1 Global Scalable Name Space
• 4.1.2 Client software
• 4.1.3 Exportable interfaces and protocols
• 4.1.4 Coexistence with other file systems
• 4.1.5 Transparent global capabilities
• 4.1.6 Integration in a SAN environment

4.2 Scalable Infrastructure for Clusters and the
Enterprise

• 4.2.1 Parallel I/O Bandwidth
• 4.2.2 Support for very large file systems
• 4.2.3 Scalable file creation & Metadata Operations
• 4.2.4 Archive Driven Performance
• 4.2.5 Adaptive Prefetching

4.3 Integrated Infrastructure for WAN Access
• 4.3.1 WAN Access To Files
• 4.3.2 Global Identities
• 4.3.3 WAN Security Integration

4.4 Scalable Management & Operational Facilities
• 4.4.1 Need to minimize human management effort
• 4.4.2 Integration with other management tools
• 4.4.2 Integration with other Management Tools
• 4.4.3 Dynamic tuning & reconfiguration
• 4.4.4 Diagnostic reporting

• 4.4.5 Support for configuration management
• 4.4.6 Problem determination GUI
• 4.4.7 User statistics reporting
• 4.4.8 Security management
• 4.4.9 Improved Characterization and Retrieval

of Files
• 4.4.10 Full documentation
• 4.4.11 Fault Tolerance, Reliability, Availability,

Serviceability (RAS)
• 4.4.12 Integration with Tertiary Storage
• 4.4.13 Standard POSIX and MPI-IO 4.4.14

Special API semantics for increased
performance

• 4.4.15 Time to build a file system
• 4.4.16 Backup/Recovery
• 4.4.17 Snapshot Capability
• 4.4.18 Flow Control & Quality of I/O Service
• 4.4.19 Benchmarks

4.5 Security
• 4.5.1 Authentication
• 4.5.2 Authorization
• 4.5.3 Content-based Authorization
• 4.5.4 Logging and auditing
• 4.5.5 Encryption
• 4. 5.6 Deciding what can be trusted

Salishan FY06

Lots of things have to scale

File System Attributes

1999 2002 2005 2008
Teraflops 3.9 30 100 400

Memory size (TB) 2.6 13-20 32-67 44-167

File system size (TB) 75 200 - 600 500 -2,000 20,000

Number of Client Tasks 8192 16384 32768 65536

Number of Users 1,000 4,000 6,000 10,00

Number of Directories 5.0*10^6 1.5*10^7 1.8*10^7 1.8*10^7

Metadata Rates
Data Rate

500/sec
1 mds

3 GB/sec

2000/sec
1 mds

30 GB/sec

20,000/sec
n mds

100 GB/sec

50,000/sec
n mds

400 GB/sec
Number of Files 1.0*10^9 4.0*10^9 1.0*10^10 1.0*10^10

Salishan FY06

Other Requirements

Based on Standards
Security
• Content based security, born on marks, hooks for end to end encryption,

extensible attributes, etc.
• Real transactional security on the SAN, not simple zoning and other poor

attempts (ANSI T10)
Global, Heterogeneous, Protocol Agnostic, open source, open
protocols
POSIX behavior with switches to defeat portions
• Lazy attributes, byte range locks, etc.

WAN behavior like AFS/DFS but better
• Including ACL’s, GSS, multi domain, directory delegation, etc.

Scalable management (sorry, scalability keeps coming up)
A product, supported by a market larger than the Tri-Labs

Salishan FY06

Seems easy enough, …

well maybe not!

Salishan FY06

First: A Tutorial

Why do I need to sit through a
high level tutorial on File
Systems?
To understand the problems we
face.

Salishan FY06

Parallel Object File System

Object Based Storage Devices
Stripe data across Secured Devices

Native Clients NFS/CIFS Gateway
or I/O nodes in Clusters

•••

Policy/ Storage/Token
Metadata Manager

Cluster
Name space

hashed over multiple
nodes

•••NET
•••

Workstations

Salishan FY06

RAID

Protection from data loss due to failing
disks
Periodic scrubbing of disks to detect
failure quickly
Disk problem/retry counting to detect
failure quickly
On the fly rebuild during normal traffic,
hot sparing, notifications, etc.

Salishan FY06

RAID 0

Striped disk array without fault tolerance, i.e. no
parity stripe.
Data is broken down into blocks and each block is
written to a separate storage blade.

Salishan FY06

RAID 1

Mirroring or writing the same data to two storage
devices at once.

Salishan FY06

Plus 1 RAID 5

Independent data disks with distributed parity blocks. Data
is striped across a number of storage devices and a parity
stripe is written for fault tolerance. Parity load is shared.

Salishan FY06

Plus 1 Layout – How to be efficient

•Disk Block (sweet spot for
drive technology, 64k-256k,
gets bigger with denser
drives)

•Parity width N+P (typically
8+1 to 9+1 range

•Visit Depth (varies but for
efficient pipe filling, think
100ish or more)

•For Efficient pre-calculated
parity write operations for
common RAID N+1
(N*block), think 1-2 MBytes
and getting bigger

•To keep the pipe full, think
10’s to 100 Mbyte sized
operations to a Group of
disks with parity

Visit
Depth

Parity Width

Disk
Block

Salishan FY06

Plus 2 RAID – How to be efficient

Normal XOR parity is calculated
straight across the disk blocks
Diagonal parity is calculated on
diagonals, there are other
methods based on polynomials
For Efficient pre-calculated parity
write operations for common RAID
N+1 (N2 * block), think 8-16
MBytes and getting bigger
To keep the pipe full, think 100
Mbytes or bigger to a RAID Group
You need to have way more data
around to do efficient parity
calculation

Salishan FY06

Some interesting trends

Salishan FY06

Emerging Issues with RAID

Disks are getting much denser but not
appreciably faster (bandwidth read/write)

Salishan FY06

RAID Oriented Implications of
Capacity vs BW Trend

We will be buying more disks for BW than for Capacity
Write size for single disk sweet spot keeps rising and thus, for full
stride RAID continues to rise
Files will be striped over a larger percentage of the disks on the floor
on average to get desired data rate
Reliability at scale becomes more and more important

Disks Needed

0
5000

10000
15000
20000
25000
30000
35000

19
97

-3t
f

20
02

-30
tf

20
05

-10
0tf

20
08

-50
0tf

20
11

-20
00

tf

Year

N
um

be
r o

f D
is

ks

Number of disks
for capacity

Number of disks
for data rate

SATA

Salishan FY06

The ASC I/O Ratio and past over
engineering of the BW
ASC ratios (1 GByte/sec per Tflop and 20 Bytes/flop disk)
In 1996 on a 3 Tflop system, 20 bytes/flop is 60 TBytes of disk, which
yealded about 48 GigaBytes/sec which was over engineered by a
factor of 16X for BW
In 2002 on a 20 Tflop system, 20 bytes/flop is 400 Tbyte of disk,
which yealded about 40 Gigabytes/sec which was over engineered by
a factor of 2X for BW
Today for a 100 Tflop machine, 20 bytes/flop is 2000 Tbytes of disk
yealds a little over 100 Gigabytes/sec, which is not over engineered at
all.

We do not enjoy having far more BW than we really needed to get the
space anymore!

Salishan FY06

Classical RAID Plus 1 Rebuild
Read the remaining disks, XOR, and write the result.
Speed ultimately governed by write speed of target new
disk
This is true for N+1 and N+2 with Classical RAID

A0+B0+D0+P0

Salishan FY06

Classical RAID Rebuild Time

Rebuild times get worse and worse,
from minutes, to hours, to days –
raising chances of 2-3 disk failure more
and more

Classical Raid Rebuild Time

0
10
20
30
40

19
97

-3t
f

20
02

-30
tf

20
05

-10
0tf

20
08

-50
0tf

20
11

-20
00

tf

years

ho
ur

s minimum

busy

Salishan FY06

The future reliability story

We are fighting the combination of
• More and more disks to get the job done, driving the reliability down
• Longer rebuild times driving the reliability down

What do we do?
• Most solutions are depending on +2

technologies
• RAID plus 2 technology protects against

a two disk loss, but the trend these two
issues raises is still less and less reliable
over time. You have to collect more
data to calculate parity with +2
methods, and this is an important fact!

• As the collective of machines get larger
and less reliable, can we afford to have
the mechanism we are using to deal
with that growing unreliability (the file
system/storage), become less and less
reliable?

Salishan FY06

Scalable Metadata

Disks not getting more agile, Metadata services must scale
Due to growth in global use from many clusters and due to usage
patterns, N to N, N to 1 small ops, etc. metadata scaling issues are
upon us.

Salishan FY06

A Disturbing Summary

ASC ratio driven BW over engineering is no
more
You have to involve more disks to do the
job
Number of disks to get the BW is going
through the roof
Rebuild times get worse and worse
Plus 2 technologies don’t really solve the
problem reliability/rebuild problem
It takes larger and larger write operations
to be efficient
Disks aren’t helping us scale metadata
either

Salishan FY06

What do apps do?

Salishan FY06

Example of well aligned I/O

Parallel file

11 12 13 14

Process 1

21 22 23 24
Process 2

31 32 33 34

Process 3

41 42 43 44

Process 4

RAID Group 1 RAID Group 2

Oh, if applications really did I/O like this!

RAID Group 3 RAID Group 4

Salishan FY06

Real applications do small, unbalanced,
and unaligned I/O

Parallel file

11 12 13 14

Process 1

21 22 23 24

Process 2

31 32 33 34

Process 3

41 42 43 44

Process 4

RAID Group 1 RAID Group 2
Notice every write is possibly a read/update/write since each write
is a partial parity update. Notice that processes are serializing on

their writes as well.

RAID Group 3

Salishan FY06

11 21 31 41

Middleware can help but more work
is needed

Parallel file

12 22 4232 23
33 4313

44
3424

14

Process 1 Process 2 Process 3 Process 4

RAID Group 1 RAID Group 2 RAID Group 3

CB procs

RAID Group 4

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

Often, this ends up being an N-squared or
N-Log-N problem for the interconnect!

Salishan FY06

The apps versus the Industry

CPU’s are not getting faster, so we
are getting more CPU’s.
Memory per processor is not going up
appreciably, in some cases it is going
down
Therefore, apps are not going to
write larger writes (and writes are
already too small for current storage
systems)
But RAID/Disks are requiring larger
and larger write ops for efficiency

Salishan FY06

What about the Storage Network?

Salishan FY06

Global connection of multiple terascale
clusters to a common file system

Terascale cluster with internal
fabric and as many connections to
I/O infrastructure as needed, with

fail over, load balanced

Cluster A Cluster B

Global File
Parallel System

Global Parallel
Archive

Global File System
and Archive
Integration

FTA’s

Cluster
interconnect
generation X

Cluster
interconnect
generation Y

Cluster
interconnect
generation Z

Viz Cluster

Scalable, few or no
critical points of
failure, easily

resized I/O, fail
over, load
balanced.

infrastructure,
based on

commodity parts,
needs high

interoperability over
long time

Salishan FY06

Well, maybe it is harder than it seems and getting harder
by the month?

Of course we have come a long way since the mid 1990’s
with parallel file systems and I/O stacks. We also have
made some great strides in spinning up R&D in this area
as well.

Hopefully you will hear about some interesting
approaches to these problems and others this week.
If you don’t and you still want to know more, just ask
your local I/O Nerd, or catch me in the hallway.

