
Extreme Computing’05

Informatics & HPC:
Tomorrow’s Applications Meet

Yesterday’s Technologies

Bruce Hendrickson
Jonathan Berry
Will McLendon
Tammy Kolda

Sandia National Labs

Discrete Algorithms & Math Department

Salishan ’06

Future DOE HPC Needs

The past is mostly about physical simulation
The future will be more diverse
Data-centric computing is on the ascendancy
» Experimental data
» Simulation data
» National security data

Computing for decision support
Future DOE HPC applications include
» Complex search capabilities
» Data mining
» Machine learning

Discrete Algorithms & Math Department

Salishan ’06

Context

Data computing is multifaceted
This talk is not about …
» data management & retrieval
» natural language processing
» metadata
» data fusion
» uncertainty
» provenance tracking, etc, etc.

Instead, consider the seemingly simpler problem
» How can our vast experience in HPC be applied to data-

centric computing problems?

Discrete Algorithms & Math Department

Salishan ’06

Data Computing is Different

Even if we’re in core …

Minimal computation to mask access time
» Low utilization of processors

Complex, unstructured access patterns
» Poor utilization of memory hierarchy

Complicated data dependencies
» Difficult to partition well
» Prefetching likely to be ineffective

The Anti-LINPACK!

Discrete Algorithms & Math Department

Salishan ’06

Are We Ready?

Existing architectures
» Poor I/O
» Require cache-exploitable reference patterns
» Not benchmarked on data-centric applications

Existing Programming models & languages
» Don’t efficiently support random global accesses
» Require partitionability into P subproblems

– This is true of MPI, OpenMP and PGAS Languages (UPC)

Discrete Algorithms & Math Department

Salishan ’06

Case Study: Graph Informatics

Discrete Algorithms & Math Department

Salishan ’06

Query Example I: Short Paths

Discrete Algorithms & Math Department

Salishan ’06

Example II: Pattern Finding

Image Source:
T. Coffman,
S. Greenblatt,
S. Marcus,
Graph-based
technologies for
intelligence
analysis,
CACM, 47
(3, March 2004):
pp 45-47

Discrete Algorithms & Math Department

Salishan ’06

Graph-Based Informatics: Data

Datasets can be enormous

Graphs are highly unstructured
» High variance in number of neighbors
» Little or no locality – Not partitionable
» Experience with scientific computing graphs of

limited utility

Queries touch unpredictable subsets of
data

Discrete Algorithms & Math Department

Salishan ’06

Architectural Challenges

Runtime is dominated by latency
» Random accesses to global address space
» Perhaps many at once – fine-grained parallelism

Essentially no computation to hide access time

Access pattern is data dependent
» Prefetching unlikely to help
» Usually only want small part of cache line

Potentially abysmal locality at all levels of memory
hierarchy

Discrete Algorithms & Math Department

Salishan ’06

Desirable Architectural Features

Low latency / high bandwidth
» For small messages!

Latency tolerant
Light-weight synchronization mechanisms
Global address space
» No graph partitioning required
» Avoid memory-consuming profusion of ghost-nodes
» No local/global numbering conversions

One machine with these properties is the Cray MTA-2
» And successor Eldorado

Discrete Algorithms & Math Department

Salishan ’06

How Does the MTA Work?

Latency tolerance via massive multi-threading
» Context switch in a single tick
» Global address space, hashed to reduce hot-spots
» No cache or local memory.
» Multiple outstanding loads

Remote memory request doesn’t stall processor
» Other streams work while your request gets fulfilled

Light-weight, word-level synchronization
» Minimizes conflicts, enables parallelism

Flexible dynamic load balancing
Notes:
» 220 MHz clock
» Largest machine is 40 processors

Discrete Algorithms & Math Department

Salishan ’06

Case Study: MTA-2 vs. BlueGene

With LLNL, implemented S-T shortest paths in MPI
Ran on IBM/LLNL BlueGene/L, world’s fastest computer
Finalist for 2005 Gordon Bell Prize
» 4B vertex, 20B edge, Erdös-Renyi random graph
» Analysis: touches about 200K vertices
» Time: 1.5 seconds on 32K processors

Ran similar problem on MTA-2
» 32 million vertices, 128 million edges
» Measured: touches about 23K vertices
» Time: .7 seconds on one processor, .09 seconds on 10 processors

Conclusion: 4 MTA-2 processors = 32K BlueGene/L processors

Discrete Algorithms & Math Department

Salishan ’06

But Speed Isn’t Everything

Unlike MTA code, MPI code limited to Erdös-Renyi graphs
» Can’t support power-law graphs; pervasive in informatics

MPI code is 3 times larger than MTA code
» Took considerably longer to develop

MPI code can only solve this very special problem
» MTA code is part of general and flexible infrastructure

MTA easily supports multiple, simultaneous users

But … MPI code runs everywhere
» MTA code runs only on MTA/Eldorado and on serial machines

Discrete Algorithms & Math Department

Salishan ’06

 10

 100

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Connected Components: 234M Edges

3Ghz, 64Gb Opteron Workstation: 5 minutes

C-K-Kahan: edge lists are K-ary trees

Kahan estimates 3x speedup with dynamic arrays

"C-K-Kahan"
"SandiaKahan"

"Bully"

MTA-2: Connected Components

5.41s

2.91s

Power Law Graph
(highly unstructured)

Discrete Algorithms & Math Department

Salishan ’06

MTA-2 Results: Subgraph Isomorphism

 100

 1000

 1 10

T
im

e
in

 S
ec

on
ds

Number of Processors

Subgraph Isomorphism Heuristic: 234M Edges (Target of 20 Edges)

3Ghz, 64Gb Opteron Workstation: ~15 minutes

"SubgraphIsomorphism"

Discrete Algorithms & Math Department

Salishan ’06

Algorithmic Approach

Very many small threads (>>P)
» Runtime manages them as a virtual task pool
» Runtime does virtual-to-physical assignment dynamically
» Programmer needn’t worry about load balancing
» Dynamic & recursive creation of parallelism

Asynchronous, no global control
» Thread coordination via word-level locking
» Fine-granularity enables high degree of parallelism

Serial-looking code
» But subtle & challenging to get right

Discrete Algorithms & Math Department

Salishan ’06

Existing Programming Models

Most MPI programs use Bulk Synchronous
Processing approach
» Independent computation then collective communication
» Latencies amortized by bundling communication

This doesn’t work for graph informatics
» Parallelism is too fine-grained & asynchronous

Data and computation not easily partitionable
» Profusion of ghost nodes or expensive rendezvous in MPI

Want large number of small, virtual threads
» No major language currently supports this

Discrete Algorithms & Math Department

Salishan ’06

Conclusions

Scientific simulation is from Mars,
Data-centric computing is from Venus

We’ll need to revisit all our HPC assumptions
» Architectures
» Computing models
» Languages, etc.

What an exciting time to be in HPC!

Discrete Algorithms & Math Department

Salishan ’06

Acknowledgements

Thanks to Keith Underwood, Scott Kohn, Mike
Merrill, Candy Culhane, Simon Kahan, David
Bader, Bill Carlson, Richard Murphy.

bah@sandia.gov
www.cs.sandia.gov/~bahendr

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the US DOE
under contract DE-AC-94AL85000. This work was funded
by Sandia’s LDRD Program.
SAND 2006-2368C

