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Sometimes A Different Approach Is UsefulSometimes A Different Approach Is Useful

• The challenge of scaling up systems where many applications 
need to access large data in global parallel file systems is well 
documented

• At the Multi Terabyte scale, It is hard to move the data from 
where it is stored to where it is processed …

• But if moving data to processing is so difficult, why not try an
approach where the application owns the data and processing is 
moved to where the data is stored?

• The application in this case is the relational database, a very 
useful tool for data intensive computing
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Operational vs. Analytical RDBMS



4

The Legacy Focus: Transaction ProcessingThe Legacy Focus: Transaction Processing
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The Challenges Driving Us At The Challenges Driving Us At NetezzaNetezza

Forces driving disruptive change
• Sub-transactional data in a fully-

connected world
• Ever-increasing need for speed
• Increasing regulatory requirements
• Market mandate for operational simplicity
• Need for actionable intelligence from 

unlimited data at real-time speeds

This Need Cannot be Met by Today’s Systems
Linux cluster scaling limited by network performance & system
management complexity
Scaling with large NUMA SMP servers limited by I/O, network
performance & operating system complexity
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Not All Computing Tasks Fit into Memory Not All Computing Tasks Fit into Memory ––
The Analytic DB ChallengeThe Analytic DB Challenge

There are benefits to scaling up analytic DBs:

• Transactional and referential integrity

• High level query language (with parallel run time 
optimization performed by application’s query planner)

• Operation on sets of records in tables (vs sequential 
access of records in files)

• Database standards have matured and are now 
consistent across the industry 

• Data volumes have grown from gigabytes to hundreds of 
terabytes 

• Disk storage is now less than $1 per Gigabyte!
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For Perspective  (1980For Perspective  (1980’’s) s) ……

• The relational database was 
invented on a system that 
merged server, storage and 
database

• It was called a mainframe!

CPU

Memory

IOPIOP
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By The 1990By The 1990’’s, Rules Changeds, Rules Changed

• Mainframes attacked by killer 
micros!

• Memory grew large

• I/O became weak

• System costs dropped

• Storage moved off to the network

CPU CPU CPU CPU

CPU CPU CPU CPU

Very Large
Memory

I/O

Storage Area
Network



10

Capacity Was Added By ClusteringCapacity Was Added By Clustering
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Moving Processing to the DataMoving Processing to the Data

• Active Disk architectures
> Integrated processing power and memory into disk units
> Scaled processing power as the dataset grew 

• Decision support algorithms offloaded to 
Active Disks to support key decision support 
tasks
> Active Disk architectures use stream-based model ideal 

for the software architecture of relational databases

In Netezza’s NPS® System: “Snippet Processing Units”
take streams as inputs and generate streams as outputs
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SQL Query Flow DiagramSQL Query Flow Diagram

Join Scan

Table
A

Table
B

Table
C

Table
D



14

Streaming Data FlowStreaming Data Flow
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Netezza Performance Server

Snippet Processing Unit (SPU)

Active Disks as Intelligent Storage NodesActive Disks as Intelligent Storage Nodes

Netezza added: 
•Highly optimized 
query planning 

•Code generation
•Stream processing

Result: 10X to 100X 
performance speedup 
over existing systems

A compute node for directly processing SQL queries 
on tables
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Asymmetric Massively Parallel ProcessingAsymmetric Massively Parallel Processing™™
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Netezza Performance Server
ClientBI Applications

Fast Loader/Unloader

Local Applications

ODBC 3.X
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Move processing to the data (maximum I/O to a single table)
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AFTER
Higher Performance – Greater Scalability – Higher Reliability

Packaging For High Density And Low PowerPackaging For High Density And Low Power

Dual NICs
1M Gate
FPGA

1 GB RAM
Socketed DIMM

440GX
Power PC

Full GigE to
each SPU

Enterprise SATA Disk Drive
150 GB / 400 GB
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Binary Compiled Queries Binary Compiled Queries 
Executed on a Massively Parallel GridExecuted on a Massively Parallel Grid

select c_name, sum(o_totalprice) price from customer, orders 
where o_orderkey in (select l_orderkey from lineitem2 where 
o_orderkey=l_orderkey and l_shipdate>='01-01-1995' and 
l_shipdate<='01-31-1995') and c_custkey=o_custkey group by 
c_name;" test_tim >test.out

select c_name, sum(o_totalprice) price from customer, orders 
where o_orderkey in (select l_orderkey from lineitem2 where 
o_orderkey=l_orderkey and l_shipdate>='01-01-1995' and 
l_shipdate<='01-31-1995') and c_custkey=o_custkey group by 
c_name;" test_tim >test.out/********* Code **********/

void GenPlan1(CPlan *plan, char *bufStarts,char *bufEnds, bool
lastCall) {

//
// Setup for next loop (nodes 00..07)
//
// node 00 (TScanNode)
TScanNode *node0 = (TScanNode*)plan->m_nodeArray[0];
// For ScanNode:

TScan0 *Scan0 = BADPTR(TScan0*);
CTable *tScan0 = plan->m_nodeArray[0]->m_result;

char *nullsScan0P = BADPTR(char *);
// node 01 (TRestrictNode)
TRestrictNode *node1 = (TRestrictNode*)plan->m_nodeArray[1];
// node 02 (TProjectNode)
TProjectNode *node2 = (TProjectNode*)plan->m_nodeArray[2];
// node 03 (TSaveTempNode)
TSaveTempNode *node3 = (TSaveTempNode*)plan->m_nodeArray[3];
// For SaveTemp Node:
TSaveTemp3 *SaveTemp3 = BADPTR(TSaveTemp3*);
CTable *tSaveTemp3 = node3->m_result;
CRecordStore *recStore3 = tSaveTemp3->m_recStore;
// node 04 (THashNode)

…

/********* Code **********/

void GenPlan1(CPlan *plan, char *bufStarts,char *bufEnds, bool
lastCall) {

//
// Setup for next loop (nodes 00..07)
//
// node 00 (TScanNode)
TScanNode *node0 = (TScanNode*)plan->m_nodeArray[0];
// For ScanNode:

TScan0 *Scan0 = BADPTR(TScan0*);
CTable *tScan0 = plan->m_nodeArray[0]->m_result;

char *nullsScan0P = BADPTR(char *);
// node 01 (TRestrictNode)
TRestrictNode *node1 = (TRestrictNode*)plan->m_nodeArray[1];
// node 02 (TProjectNode)
TProjectNode *node2 = (TProjectNode*)plan->m_nodeArray[2];
// node 03 (TSaveTempNode)
TSaveTempNode *node3 = (TSaveTempNode*)plan->m_nodeArray[3];
// For SaveTemp Node:
TSaveTemp3 *SaveTemp3 = BADPTR(TSaveTemp3*);
CTable *tSaveTemp3 = node3->m_result;
CRecordStore *recStore3 = tSaveTemp3->m_recStore;
// node 04 (THashNode)

…
1011010101010101010111110101010100100101010111010101001011110101
0100101011110110100101010101110101011001010101010111110100100101
0101010101010101010010101001111110101010101010101001010101010010
1001011010011111111010101010100110100101010101001010101010100101
01010101010010101010100111010101010101010101010…

1011010101010101010111110101010100100101010111010101001011110101
0100101011110110100101010101110101011001010101010111110100100101
0101010101010101010010101001111110101010101010101001010101010010
1001011010011111111010101010100110100101010101001010101010100101
01010101010010101010100111010101010101010101010…

c_name       |   price
--------------------+-----------
Customer#000000796 | 318356.97
Customer#000001052 | 293680.56
Customer#000001949 | 215280.98
Customer#000002093 | 282531.93
Customer#000005656 | 335297.31
Customer#000005861 | 233691.03
Customer#000006002 | 267000.92
Customer#000006343 | 595819.82
Customer#000006532 | 442254.91

….
real    0m0.552s
user    0m0.010s
sys     0m0.000s

c_name       |   price
--------------------+-----------
Customer#000000796 | 318356.97
Customer#000001052 | 293680.56
Customer#000001949 | 215280.98
Customer#000002093 | 282531.93
Customer#000005656 | 335297.31
Customer#000005861 | 233691.03
Customer#000006002 | 267000.92
Customer#000006343 | 595819.82
Customer#000006532 | 442254.91

….
real    0m0.552s
user    0m0.010s
sys     0m0.000s
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Netezza Performance Server
Gigabit Ethernet

Snippet Processing Unit (SPU)

Primary

SPU
Swap

Mirror

PowerPC
Query Engine

Joining
Sorting

Grouping

Snippet Queue

Replication
Manager

Main Memory

Streaming
Record Processor

Project    Restrict

Transaction/Lock
Manager

A Look Inside the SPUA Look Inside the SPU
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SELECT count ( * ) , sex , age FROM emp WHERE state = ‘VA’ and age > 18 GROUP BY sex , age ORDER BY age ;
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SELECT count ( * ) , sex , age FROM empemp WHERE state = ‘VA’ and age > 18 GROUP BY sex , age ORDER BY age ;

First things first.  The table is distributed 
amongst all of the SPU’s in the system so that is 
can be processed in parallel.

When the table is read, your scan speed is the 
SUM of the speed of all of the disk drives 
combined.
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SELECTSELECT count ( * ) , sex , agesex , age FROM emp WHERE state = ‘VA’ and age > 18 GROUP BY sex , age ORDER BY age ;

PROJECTION

On each SPU, the FPGA / disk controller 
SELECTSELECTs just the columns of interest.

Record Level Operations
Extract fields of interest



23

na
m

e
ad

dr
es

s
ci

ty
st

at
e

zi
p

se
x

ag
e

do
b

na
m

e
ad

dr
es

s
ci

ty
st

at
e

zi
p

se
x

ag
e

do
b

FPGA

FPGA

FPGA

FPGA

FPGA

SELECT count ( * ) , sex , age FROM emp WHERE WHERE state = state = ‘‘VAVA’’ and age > 18and age > 18 GROUP BY sex , age ORDER BY age ;

Record Level Operations
Extract fields of interest 
from records of interest

RESTRICTION

The FPGA is also responsible for 
choosing the records of interest –
applying the conditions of the 
WHEREWHERE clause.
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SELECT count ( * )count ( * ) , sex , age FROM emp WHERE state = ‘VA’ and age > 18 GROUP BYGROUP BY sex , age sex , age ORDER BYORDER BY ageage ;

Record Level Operations
Extract fields of interest 
from records of interest

Set Operations
Data is joined, sorted, 
grouped, aggregated
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Record Level Operations
Extract fields of interest 
from records of interest

Results are consolidated
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SELECT count ( * ) , sex , age FROM emp WHERE state = ‘VA’ and age > 18 GROUP BY sex , age ORDER BY age ;       

Set Operations
Data is joined, sorted, 
grouped, aggregated
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What about scientific data What about scientific data 
and nonand non--SQL heuristics?SQL heuristics?

• BLAST is a widely used tool for finding similar sequences 
in large databases of sequences

• Netezza has integrated the BLAST heuristic algorithms 
into a new type of SQL Join:

The syntax is an extension of the SQL92 generalized join syntax:
SQL92: SELECT <cols> FROM <t1> <jointype> <t2> ON <join-condition>

The blast join syntax where the controls is a literal string is:
SELECT <cols>
FROM <haystack> [ALIGN <needles>] [WITH <controls>]
ON BLASTX(<haystack.seq>,<needles.seq>,<controls.args>)

Thus a simple literal protein blast looks like:
SELECT <cols> FROM haystack ON BLASTP(haystack.seq, 'ZZAADEDAAM', '-e.001')
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Netezza Performance ServerNetezza Performance Server®® FamilyFamily
NPS 8000zNPS 8000z--Series HighSeries High--Performance ProductsPerformance Products

5.5 – 33 TB5.5 – 22 TB5.5 – 11 TB5.5 TB2.75 TBUser Space
67244822411256Processors

8650z8450z8250z8150z8050z

8000z Series:
1-33 TB

Continued Innovation in the 8000 Family
• Built & Priced for PERFORMANCE

• Enhanced performance, reliability and system capacity

• Simple, scalable capacity expansion across the product range
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Netezza Performance ServerNetezza Performance Server®® FamilyFamily
NPS 10000NPS 10000--Series HighSeries High--Density ProductsDensity Products

10 – 50 TB
448

10400 HD

10 – 100 TBUser Space
896Processors

10800 HD

10000 Series:
Up to 100 TB 0.9 Terabyte 

Total DRAM
0.3 Petabyte

Total Storage

Introducing the 10000 Product Family
• HIGH PERFORMANCE & HIGH DATA DENSITY in a single NPS appliance

• Simple, cost-effective, scalable capacity expansion

• Up to 12.5 TB of user space per rack
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Some of Our Some of Our CustomersCustomers by Vertical Marketby Vertical Market……
Retail Telecom

Financial Services

Online Analytic Services

Healthcare

Other
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Situation
• Competed against a Teradata 

system 25x more expensive
• Total amt of data loaded: 3.5TB
• Time to load: 28 hours
• 118GB/hour
• Queries included market basket 

penetration, Y/Y comparisons, 
top UPC by movements, price 
optimization tracking, etc.

• Running SQL
Results
• NPS system went from loading 

dock to installed, configured and 
running in three hours

• Queries were run substantially 
faster, including one that was 
over five times faster

*Netezza results based on an NPS 8150.
Teradata queries run on a 40-node system (5200 &5300)

Proven Results: Proven Results: 
Leading Food & Drug RetailerLeading Food & Drug Retailer

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

4 min

0

100

400

300

Minutes

55 min

18 min

8 secs

14 min
22 min

Teradata
Netezza 8150
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Proven Results:Proven Results:
Report Execution from a Government POCReport Execution from a Government POC

* Netezza results based on an NPS 8250.
Teradata queries run on a 96-node system (52xx and 53xx)

Teradata Netezza 8050
Queries

Impact
• NPS system went from loading dock to 

installed, configured and running in five hours
• Queries showed substantial improvement on 

Netezza – 15 times faster on average!
• Total execution time (13 reports) was 

~7 ½ hours on TD vs. only 47 min on 
Netezza

Situation
• Competed against a very large Teradata 

system (96 nodes)
• Total amount of data loaded: 2.5 TB
• 200+GB/hour load rates (single stream)
• Representative set of resource-intensive 

production MicroStrategy reports
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51x
faster!
51x

faster!

40x
faster!
40x

faster!
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2-Way Table Join
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Open Source DB Traditional RDMBS 1 Traditional RDMBS 2 Netezza 8150

Proven Results: Proven Results: 
Analytic Service Provider Analytic Service Provider 

POC Performance
• 2-way Cartesian Join Mixed 

Read/Write Test
• 37.6M rows with 122.9M 

rows
• Performance Improvement 

with Netezza
> 497x v. Open Source DB 
> 46x v. Traditional RDBMS 1
> 19x v. Traditional RDBMS 2

497x slower

46x slower
19x slower
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Situation
• Red Brick: 3.2 billion rows
• NPS: 5.4 billion rows
• 6 queries–load, expansion and 

test
• Business Objects and SQL

Query Performance
• NPS system handled 69% 

more data volume but was 
able to complete the total 
workload in 21 minutes vs. 50 
hours, 143x faster!

Load Performance
• 140+ GB/hr

Proven Results: Proven Results: 
EE--Business CustomerBusiness Customer

70,000

1 2 3 4                           5                           6

Seconds

40,000

10,000

Red Brick / HP (3.2 Billion)
Netezza 8250 (5.4 Billion) Sequential

*Netezza results based on an NPS 8250. 
Red Brick results on HP SuperDome 32 CPU/32GB RAM and EMC SAN

19 secs

362 secs

6 secs

205 secs
691 secs

6 secs

Queries
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“Mainframe”

Unix
“Large
SMP”

“Cluster of 
Linux Small SMP”

Netezza 
“Asymmetric MPP”

Optimal Grid for DW

Netezza 
Optimal “Grid of Grids”
reaching Petabyte sizes

within or across locations

NetezzaNetezza’’ss DW System Architecture EvolutionDW System Architecture Evolution
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