
A Semi-automatic System for
Application-level Checkpoint-Recovery

Keshav Pingali
Cornell University

Joint work with Greg Bronevetsky, Rohit Fernandes,

Daniel Marques, Martin Schulz(LLNL), Paul Stodghill,

Why CPR?

• Program runtimes are exceeding MTBF of hardware
– Protein-folding on Blue Gene may take one year per protein
– Fault-tolerance is critical

• Fault tolerance comes in different flavors
– Mission-critical systems: no down-time, fail-over, redundancy
– Computational science applications : restart after failure,

minimizing lost work
• Fault models

– Fail-stop:
• Failed process dies silently w/o corrupting data

– Byzantine:
• Arbitrary misbehavior is allowed

• Our focus:
– Computational science applications
– Fail-stop faults
– One solution: checkpoint/restart (CPR)

Why CPR? (contd.)

• Grid computing: utility computing
– Programs execute wherever there are computational

resources
– Program are mobile to take advantage of changing

resource availability
– Key mechanism: checkpoint/restart
– Identical platforms at different sites on grid

• Platform-dependent checkpoints (cf. Condor)
– Different platforms at different sites on grid

• Platform-independent (portable) checkpoints

Two approaches to CPR

• System-level checkpointing (SLC) (eg) Condor
– core-dump style snapshots of computations
– mechanisms very architecture and OS dependent
– checkpoints are not portable

• Application-level checkpointing (ALC)
– programs are self-checkpointing and self-restarting

• (eg) n-body codes save and restore positions and velocities of particles
– amount of state saved can be much smaller than SLC

• IBM’s BlueGene protein folding : megabytes vs terabytes

• Disadvantage of current application-level check-pointing
– manual implementation
– requires global barriers in programs

Our approach

Application
+

State-saving

Original
Application

Precompiler

Thin Coordination
Layer

MPI ImplementationMPI Implementation

Reliable communication layer

Failure
detector

• Automate application-level check-pointing of C programs
– minimize programmer effort

• MPI programs: [PPoPP 2003,ICS2003,SC2004]
– coordination of single-process states into a global snapshot
– non-blocking protocol: no barriers needed in program

• OpenMP programs:[EWOMP 2004, ASPLOS 2004]
– blocking protocol

• Portable MPI checkpointing: [SC 2005]
– Requires type information for each object created at runtime
– Pre-compiler analyzes C programs and flags potential portability

problems
– Successfully restarted and completed 64 processor PSC Lemieux

checkpoints on Cornell Windows cluster
• Ongoing work

– program analysis to reduce amount of saved state
– Other languages: C++

Cornell Checkpointing Compiler (C3)
Project

Outline

• Pre-compiler:
– saving state at application level

• Check-pointing MPI programs
– Non-blocking protocol

• Check-pointing OpenMP programs
– Blocking protocol

• Portable check-pointing
– Restart on different platform

• Ongoing work

Precompiler

• Where to checkpoint
– At calls to potentialCheckpoint() function

• Mandatory calls in main process (initiator)
• Other calls are optional

– Process checks if global checkpoint has been requested, and if
so, joins in protocol to save state

– Inserted by programmer or automated tool
• Currently inserted by programmer

• Transformed program can save its state only at
calls to potentialCheckpoint()

Application-level checkpointing:
saving position in program

main()
{

int a;
if(restart)

load LS;
copy LS to LS.old
jump dequeue(LS.old)

// …
LS.push(label1);

label1:
function();
LS.pop();
// …

}

• Recovery structure LS (Location
Stack) keeps track of function calls
that could lead to
potentialCheckpoint

• Code for updating LS is inserted by
pre-compiler

• On recovery, function calls on LS
are repeated to rebuild the stack
frames

• Portable way of saving the PC

Saving Application State

• Stack
– Location stack (LS): track which function invocations led to place

where checkpoint was taken
– Variable Description Stack (VDS): records local variables in these

function invocations that must be saved
– On recovery

• LS is used to re-execute sequence of function invocations and re-create
stack frames

• VDS is used to restore variables into stack

• Heap
– special malloc that tracks memory that is allocated and freed

• Globals
– precompiler inserts statements to save them

Sequential Experiments (vs Condor)

• Checkpoint sizes are comparable.

Runtime Overheads (Linux)

0

1

2

3

4

5

6

7

8

9

bt.A mg.K cg.B sp.A ft.K lu.A ep.B treecode equake art mcf

Codes

N
or

m
al

iz
ed

 R
un

tim
e

Native Condor (0) C3 (0) Condor (5) C3 (5)

Check-pointing MPI programs

Application
+

State-saving

Original
Application

Precompiler

Thin Coordination
Layer

Failure
detector

MPI ImplementationMPI Implementation

Reliable communication layer

Need for Coordination

• Horizontal Lines – events in each process
• Recovery Line

– line connecting checkpoints on each processor
– represents global system state on recovery

• Problem with Communication
– messages may cross recovery line

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

Past
Message Future

Message

Early Message

Late Messages

• Record message data at receiver as part of
checkpoint

• On recovery, re-read recorded message data

Process P

Process Q
Late Message

P’s Checkpoint

Q’s Checkpoint

Early Messages

• Must suppress the resending of message on recovery
• What about non-deterministic events before the send?

– Must ensure the application generates the same early message on
recovery

– Record and replay all non-deterministic events between checkpoint
and send

– In our applications, non-determinism arises from wild-card MPI
receives

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q

Early Message

Difficulty of Coordination

• No communication → no coordination necessary

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q

Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q

Past
Message Future

Message

Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier
• General MIMD programs

– System-level checkpointing (eg. Chandy-Lamport)
• Forces checkpoints to avoid early messages
• Only consistent cuts

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

Past
Message Future

Message

Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier
• General MIMD programs

– System-level checkpointing (eg. Chandy-Lamport)
• Only late messages: consistent cuts

– Application-level checkpointing
• Checkpoint locations fixed, may not force
• Late and early messages: inconsistent cuts
• Requires new protocol

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

Past
Message Future

Message

Early Message

MPI-specific issues

• Non-FIFO communication – tags
• Non-blocking communication
• Collective communication

– MPI_Reduce(), MPI_AllGather(), MPI_Bcast()…

• Internal MPI library state
– Visible:

• non-blocking request objects, datatypes, communicators,
attributes

– Invisible:
• buffers, address mappings, etc.

Implementation

• Two large parallel platforms
– Lemieux: Pittsburgh Supercomputing Center

• 750 Compaq Alphaserver ES45 nodes
• Node: four 1-GHz Alpha processors, 4 GB memory,

38GB local disk
• Tru64 Unix operating system.
• Quadrics interconnection network.

– Velocity 2: Cornell Theory Center
• 128 dual-processor Windows cluster

• Benchmarks:
– NAS suite: CG, LU, SP
– SMG2000, HPL

Overheads on Lemieux

0.90

0.95

1.00

1.05

1.10

1.15

1.20

lu.D.64 lu.D.256 lu.D.1024 sp.D.64 sp.D.256 sp.D.1024 cg.D.64 cg.D.256 cg.D.1024 smg.64 smg.256 smg.1024 hpl.64 hpl.256 hpl.1024

Codes

N
or

m
al

iz
ed

 ru
nt

im
e

Original C3 (0) C3 (1)

Outline

• Pre-compiler:
– saving state at application level

• Check-pointing MPI programs
– Non-blocking protocol

• Check-pointing OpenMP programs
– Blocking protocol

• Portable check-pointing
– Restart on different platform

• Ongoing work

Blocking Protocol

• Protocol:
– Barrier
– Each thread records own state
– Thread 0 records shared state
– Barrier

Thread A

Thread B

Saving
State

• Protocol introduces new barriers into program
• May cause errors or deadlock
• If checkpoint crosses barrier:

– Thread A reaches barrier, waits for thread B
– Thread B reaches checkpoint, calls first barrier
– Both threads advance

• Thread B recording checkpoint
• Thread A computing, possibly corrupting checkpoint

Thread A

Thread B
Checkpoint

Problems Due to Barriers

Application Barrier

Deadlock due to locks

• Suppose checkpoint crosses dependence
– Thread B grabs lock, will not release until after

checkpoint
– Thread A won’t checkpoint before it acquires lock

• Since checkpoint is barrier: deadlock

Thread A

Thread B
Checkpoint

()
Lock Unlock

()
Lock Unlock

Experimental Setup

• SPLASH-2 benchmarks
– Generic shared memory benchmarks
– Can be specialized to any shared memory API

• Test platforms:
– 2-way Athlon / Linux

• Compared to BLCR

– 4-way Alpha EV68 / Tru64
– Windows/x86

Linux/86

1 Checkpoint Overheads

0

0.5

1

1.5

2

2.5

3

3.5

fft lu

radix
ba

rne
s

oc
ea

n-c
radio

sit
y

raytr
ac

e
water-n
water-s

Splash 2 Benchmarks

No
rm

al
iz

ed
 R

un
ni

ng
 T

im
e

Uninstrumented
BLCR 1 Ckpt - Overhead
C3 1 Ckpt - Overhead

~770MB

~770MB

Checkpoints saved to local disk

Tru64/Alpha

1 Checkpoint Overheads

0
1
2
3
4
5
6
7
8
9

fft lu

rad
ix

oc
ea

n-c
rad

ios
ity

ray
tra

ce
wate

r-n
wate

r-s

Splash 2 Benchmarks

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Uninstrumented
C3 1 Ckpt - Overhead

3.1GB 2.3GB

1 GB

Checkpoints saved to network file system.

Portable Checkpointing Problem

• Migrate checkpoint to a different platform and
restart there

• Dimensions of heterogeneity
– Architecture (Pentium, Alpha, Sparc, Itanium, …)
– OS (Windows, Linux, Solaris, TRU64 Unix, …)
– Compilers (GNU, SUNWSPRO, Intel, HP, Visual C)
– MPI implementations (MPIPro, MPICH, LAM)

• Approach:
– Each data object in checkpoint must have an associated

type
– Migrating checkpoint requires translating between

representations of types

Ensuring Correctness

• C is a fairly low-level language with weak typing
guarantees

• Portable checkpointing requires strong type
information

• Program analysis
– Identify constructs that could lead to errors in state

translation
– Flag warnings that allow programmers to rectify

portability problems with programs

Performance Results

• Sequential
– 3.6 Ghz Dell Dimension Desktop (Windows, Enterprise

Linux)
– Sun UltraSPARC IIIi 1060MHz(Solaris 9)

• MPI Blocking Checkpointing
– Velocity Cluster at Cornell Theory Center
– Lemieux Cluster at Pittsburgh Supercomputing Center

Comparing Performance with Condor on
Linux

Checkpointing Overhead on x86-lin-gcc

0

50

100

150

200

250

300

bt cg ep ft is lu mg sp art
eq

ua
ke mcf vp

r

Ti
m

e
(in

 s
)

Baseline

Morpheus(0ckpt)

Condor(0ckpt)

Morpheus(1ckpt)

Condor(1ckpt)

Morpheus(1ckpt+restart)

Condor(1ckpt+restart)

Portable vs Non-portable Restart

Comparison of restart and completion time form native and portable checkpoints
on 16 processors on Velocity

0

50

100

150

200

250

300

350

400

bt.C.16 cg.C.16 ep.C.16 ft.C.16 is.C.16 lu.C.16 mg.C.16 sp.C.16

Ti
m

e
(in

 s
)

Native
Portable

Ongoing work

• Integration of MPI and OpenMP sub-systems
• Integration with Pittsburgh Supercomputing

Center (PSC) system for saving checkpoint data
• Compiler analysis to reduce the amount of saved

state (with Radu Rugina)
– Identify live data
– Incremental checkpointing
– Recomputation vs state-saving

• Other languages
– C++

Summary

• System for CPR of MPI and OpenMP apps
– Application-level checkpointing for C programs
– Programs become self-checkpointing and self-restarting

• Precompiler-based single-process checkpointer
– Minimal programmer annotations

• Novel protocols
– Work with any single-process checkpointer
– Portable across MPI and OpenMP implementations

• Components orthogonal
– Can be used/applied independently

• Portable checkpointing
– Need type information for each object created at runtime

• Overhead is low
• For more information: http://iss.cs.cornell.edu

