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Why CPR?

• Program runtimes are exceeding MTBF of hardware
– Protein-folding on Blue Gene may take one year per protein
– Fault-tolerance is critical

• Fault tolerance comes in different flavors
– Mission-critical systems: no down-time, fail-over, redundancy
– Computational science applications : restart after failure, 

minimizing lost work
• Fault models

– Fail-stop:
• Failed process dies silently w/o corrupting data

– Byzantine:
• Arbitrary misbehavior is allowed

• Our focus:
– Computational science applications
– Fail-stop faults
– One solution: checkpoint/restart (CPR)



Why CPR? (contd.)

• Grid computing: utility computing
– Programs execute wherever there are computational 

resources
– Program are mobile to take advantage of changing 

resource availability
– Key mechanism: checkpoint/restart
– Identical platforms at different sites on grid

• Platform-dependent checkpoints (cf. Condor)
– Different platforms at different sites on grid

• Platform-independent (portable) checkpoints



Two approaches to CPR

• System-level checkpointing (SLC) (eg) Condor
– core-dump style snapshots of computations  
– mechanisms very architecture and OS dependent
– checkpoints are not portable

• Application-level checkpointing (ALC)
– programs are self-checkpointing and self-restarting 

• (eg) n-body codes save and restore positions and velocities of particles
– amount of state saved can be much smaller than SLC 

• IBM’s BlueGene protein folding : megabytes vs terabytes

• Disadvantage of current application-level check-pointing
– manual implementation
– requires global barriers in programs
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• Automate application-level check-pointing of C programs
– minimize programmer effort

• MPI programs: [PPoPP 2003,ICS2003,SC2004]
– coordination of single-process states into a global snapshot
– non-blocking protocol: no barriers needed in program

• OpenMP programs:[EWOMP 2004, ASPLOS 2004]
– blocking protocol

• Portable MPI checkpointing: [SC 2005]
– Requires type information for each object created at runtime
– Pre-compiler analyzes C programs and flags potential portability 

problems
– Successfully restarted and completed 64 processor PSC Lemieux

checkpoints on Cornell Windows cluster
• Ongoing work

– program analysis to reduce amount of saved state
– Other languages: C++

Cornell Checkpointing Compiler (C3) 
Project



Outline 

• Pre-compiler: 
– saving state at application level 

• Check-pointing MPI programs
– Non-blocking protocol

• Check-pointing OpenMP programs
– Blocking protocol

• Portable check-pointing
– Restart on different platform

• Ongoing work



Precompiler

• Where to checkpoint
– At calls to potentialCheckpoint() function

• Mandatory calls in main process (initiator)
• Other calls are optional

– Process checks if global checkpoint has been requested, and if 
so, joins in protocol to save state

– Inserted by programmer or automated tool
• Currently inserted by programmer

• Transformed program can save its state only at 
calls to potentialCheckpoint()



Application-level checkpointing: 
saving position in program

main()
{

int a;
if(restart)

load LS;
copy LS to LS.old
jump dequeue(LS.old)

// …
LS.push(label1);

label1:
function();
LS.pop();
// …

}

• Recovery structure LS (Location 
Stack) keeps track of function calls 
that could lead to 
potentialCheckpoint

• Code for updating LS is inserted by 
pre-compiler

• On recovery, function calls on LS 
are repeated to rebuild the stack 
frames

• Portable way of saving the PC



Saving Application State

• Stack
– Location stack (LS): track which function invocations led to place 

where checkpoint was taken
– Variable Description Stack (VDS): records local variables in these 

function invocations that must be saved
– On recovery

• LS is used to re-execute sequence of function invocations and re-create 
stack frames

• VDS is used to restore variables into stack

• Heap
– special malloc that tracks memory that is allocated and freed

• Globals
– precompiler inserts statements to save them



Sequential Experiments  (vs Condor)

• Checkpoint sizes are comparable.



Runtime  Overheads (Linux)
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Check-pointing MPI programs
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Need for Coordination

• Horizontal Lines – events in each process
• Recovery Line

– line connecting checkpoints on each processor
– represents global system state on recovery

• Problem with Communication
– messages may cross recovery line
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Late Messages

• Record message data at receiver as part of 
checkpoint

• On recovery, re-read recorded message data

Process P

Process Q
Late Message

P’s Checkpoint

Q’s Checkpoint



Early Messages

• Must suppress the resending of message on recovery
• What about non-deterministic events before the send?

– Must ensure the application generates the same early message on 
recovery

– Record and replay all non-deterministic events between checkpoint 
and send

– In our applications, non-determinism arises from wild-card MPI 
receives

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q

Early Message



Difficulty of Coordination

• No communication → no coordination necessary
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Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier
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Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier
• General MIMD programs

– System-level checkpointing (eg. Chandy-Lamport)
• Forces checkpoints to avoid early messages
• Only consistent cuts
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Difficulty of Coordination

• No communication → no coordination necessary
• BSP Style programs → checkpoint at barrier
• General MIMD programs

– System-level checkpointing (eg. Chandy-Lamport)
• Only late messages: consistent cuts

– Application-level checkpointing
• Checkpoint locations fixed, may not force
• Late and early messages: inconsistent cuts
• Requires new protocol
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Process P
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Message
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MPI-specific issues

• Non-FIFO communication – tags
• Non-blocking communication
• Collective communication

– MPI_Reduce(), MPI_AllGather(), MPI_Bcast()…

• Internal MPI library state
– Visible: 

• non-blocking request objects, datatypes, communicators, 
attributes

– Invisible: 
• buffers, address mappings, etc.



Implementation

• Two large parallel platforms
– Lemieux: Pittsburgh Supercomputing Center

• 750 Compaq Alphaserver ES45 nodes
• Node: four 1-GHz Alpha processors, 4 GB memory,          

38GB local disk
• Tru64 Unix operating system. 
• Quadrics interconnection network.

– Velocity 2: Cornell Theory Center
• 128 dual-processor Windows cluster

• Benchmarks:
– NAS suite: CG, LU, SP
– SMG2000, HPL



Overheads on Lemieux
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Outline 

• Pre-compiler: 
– saving state at application level 

• Check-pointing MPI programs
– Non-blocking protocol

• Check-pointing OpenMP programs
– Blocking protocol

• Portable check-pointing
– Restart on different platform

• Ongoing work



Blocking Protocol

• Protocol:
– Barrier
– Each thread records own state
– Thread 0 records shared state
– Barrier

Thread A

Thread B

Saving
State



• Protocol introduces new barriers into program
• May cause errors or deadlock
• If checkpoint crosses barrier:

– Thread A reaches barrier, waits for thread B
– Thread B reaches checkpoint, calls first barrier
– Both threads advance

• Thread B recording checkpoint
• Thread A computing, possibly corrupting checkpoint

Thread A

Thread B
Checkpoint

Problems Due to Barriers

Application Barrier



Deadlock due to locks

• Suppose checkpoint crosses dependence
– Thread B grabs lock, will not release until after 

checkpoint
– Thread A won’t checkpoint before it acquires lock

• Since checkpoint is barrier: deadlock

Thread A

Thread B
Checkpoint

( )
Lock Unlock

( )
Lock Unlock



Experimental Setup

• SPLASH-2 benchmarks
– Generic shared memory benchmarks
– Can be specialized to any shared memory API

• Test platforms:
– 2-way Athlon / Linux

• Compared to BLCR

– 4-way Alpha EV68 / Tru64
– Windows/x86



Linux/86
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Tru64/Alpha

1 Checkpoint Overheads
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Portable Checkpointing Problem

• Migrate checkpoint to a different platform and 
restart there

• Dimensions of heterogeneity
– Architecture (Pentium, Alpha, Sparc, Itanium, …)
– OS (Windows, Linux, Solaris, TRU64 Unix, …)
– Compilers (GNU, SUNWSPRO, Intel, HP, Visual C)
– MPI implementations (MPIPro, MPICH, LAM)

• Approach: 
– Each data object in checkpoint must have an associated 

type
– Migrating checkpoint requires translating between 

representations of types



Ensuring Correctness  

• C is a fairly low-level language with weak typing 
guarantees

• Portable checkpointing requires strong type 
information

• Program analysis
– Identify constructs that could lead to errors in state 

translation
– Flag warnings that allow programmers to rectify 

portability problems with programs 



Performance Results

• Sequential
– 3.6 Ghz Dell Dimension Desktop (Windows, Enterprise 

Linux)
– Sun UltraSPARC IIIi 1060MHz(Solaris 9)

• MPI Blocking Checkpointing
– Velocity Cluster at Cornell Theory Center
– Lemieux Cluster at Pittsburgh Supercomputing Center



Comparing Performance with Condor on 
Linux

Checkpointing Overhead on x86-lin-gcc
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Portable vs Non-portable Restart

Comparison of restart and completion time form native and portable checkpoints 
on 16 processors on Velocity
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Ongoing work

• Integration of MPI and OpenMP sub-systems
• Integration with Pittsburgh Supercomputing 

Center (PSC) system for saving checkpoint data
• Compiler analysis to reduce the amount of saved 

state (with Radu Rugina)
– Identify live data
– Incremental checkpointing
– Recomputation vs state-saving

• Other languages
– C++



Summary

• System for CPR of  MPI and OpenMP apps
– Application-level checkpointing for C programs
– Programs become self-checkpointing and self-restarting

• Precompiler-based single-process checkpointer
– Minimal programmer annotations

• Novel protocols
– Work with any single-process checkpointer
– Portable across MPI and OpenMP implementations

• Components orthogonal
– Can be used/applied independently

• Portable checkpointing
– Need type information for each object created at runtime

• Overhead is low
• For more information: http://iss.cs.cornell.edu


