
HPC Productivity –
Are We Addressing the
Right Issues?

Cherri M. Pancake
Northwest Alliance for Computational

Science & Engineering (NACSE)
Oregon State University
pancake@nacse.org

HPC Productivity –
Are We Asking the Right
Questions?

Cherri M. Pancake
Northwest Alliance for Computational

Science & Engineering (NACSE)
Oregon State University
pancake@nacse.org

We’re Fellow Travelers …
HPC isn’t a goal – it’s a road

High(way to) Performance Computing
But …this year’s
talks all cited
“productivity” too

Is productivity just a
new word for
performance?
[Still using the same
metrics and asking
the same questions]

What
should
we be

asking?

(1) Why Are We on the Road ?
[aka “why do we need performance?”]
a) Because we’re nerds and like new technology
b) Because we think speed and power are cool
c) Because current systems can’t do what we

need from them

IMPLICATIONS
We should focus on
what’s really needed
and why – not just
where technology can
take us

Focus on … Why We Need Performance
We’re heading for stormy weather

HPC users are becoming an endangered species
Users want to be productive, not just cool

ROI for human effort is too low
“I spent a whole week, to get a
microscopic improvement”

“Ramp-up cost” is way too high
“I had to take a course to learn
how to use XXX, and then it
didn’t solve my problem”

It’s pointless to talk about attracting new users
when we’re having trouble keeping current ones

“I’ve switched back to Matlab – it takes days to run,
but I can spend my time doing important things”

Focus on … Why We Need Performance
Getting it right #1: Start with how we could
improve user productivity today

Better ROI on human investment
Encourage being realistic (modest) about
expectations
Discourage investing effort in “improvements” that
may yield only marginal results

Lower ramp-up cost
Stop developing and recommending “do-all” tools
Develop some shortcuts that do simple things
easily

e.g., scripts that invoke a complex tool behind-the-
scenes – so users don’t have to learn how

(2) Can We Do a Better Job of Navigating?
[aka “aren’t we forgetting some key approaches?”]
a) No, we’ve thought of everything
b) No, automated is the only way to go
c) Yes, we could focus on Tool plus Human

IMPLICATIONS
We should capitalize on
what the user knows
about his/her code

Reexamine … Neglected Approaches
We’re wearing “blinders”

Tool-builders rule #1: get a good
name

Tool-builders rule #2: show the
user everything or nothing
Tool-builders rule #3: the real
goal is new technology

“Self-propelled instrumentation”
“Autonomous data analysis”
“Automatic pattern analysis”

PETrAT
Performance Event Trace
Analysis Tool

oops!
slide from 1993

Why do we think
tools know so much more than humans?

Reexamine … Neglected Approaches
Getting it right #2: Create a real partnership
between tool and user

Forget show-all and show-
nothing approaches

“Only tool developers like
having a dozen windows that
pop up all over the place”
“I don’t know what the
compiler did, but when I
change that one line it trashed
the performance”

Model displays on the
successful “wizard” style

Step users through logical
process – with good defaults

USER DOES ALL

TOOL DOES ALL

Reexamine … Neglected Approaches (2)
Exploit fact that users know their codes better than
anyone (anything) else

Tools are making it harder than it needs to be
Have to assume “all behaviors/values are equally
possible”
Reality may actually be much easier to analyze

Why not prompt the user for key information to
improve optimizations

“Will this loop execute >1000 times (a) every time it runs,
(b) often, (c) sometimes, (d) rarely?”
“What is the highest value loop index I will take under
normal conditions?”

And to streamline performance analysis
“Were the inputs for this run (a) typical, (c) somewhat
representative, (c) atypical?”
“This loop took 87% of total runtime. Is that (a) typical …?“

(3) Will We Know When We Get There?
[aka “is anything less than perfection a success?”]
a) Only if we reach HPC Heaven – it’s all or nothing!
b) Never mind – “It’s the journey, not the destination”
c) We need midway points – otherwise, we can’t get

the users on board

IMPLICATIONS
Incremental steps –
small, practical tools that
really address user
priorities – would make
the journey faster

Aim for … Saving Users’ Time Now
Stop looking for
perfection (silver
bullets)

Instead, do more
about what’s
hardest for users now
Stop focusing on “new and sexy” or
“publishable”
The right incremental improvements could

Stem user attrition
Get us closer to productivity

Aim for … Less than Perfection
Getting it right #3: Start addressing where users
spend (waste) the most time

Many sinkholes are simple – and addressable now
Rebuilding application after tiny incremental code
changes
Simply finding where standard libraries/files are on
different machines
Lightweight corefile concept (quick, cheap answer
to “where did my code crash?”)

Start doing it the way users have been asking for
almost 20 years

Split mega-tools into pieces with simpler scope, so
they can be easier and faster to use

A Parable …
[Inspired by (stolen from?) that story-meister Al

Geist]
Fred Johnson asked some application developers what
they needed most for their new Petaflop machine
“We really, really need an easy way to slip in a new
version of a function without having to re-build the whole
thing. You know, a linkage editor.”
“Sorry, but you just can’t have that.”
“Why not? Didn’t you have one when you were
developing applications in the 70s and 80s?”
“Yes, but things were different then.”
“Aren’t they the same now?”

WE WERE GOING
SOMEWHERE!

YOU ARE HERE

Conclusions

It’s not a matter of “scaling tools up” for Pflop
computing – they don’t cut it now
Need to focus on what’s really needed and why

Users want to be productive (not cool) scientists
Attrition is not a coincidence
Must get better ROI on human investment

To be workable, tools should
Partner with users to exploit their knowledge
Start with productivity sinkholes that can be
addressed now
Do it the way users want: simple units for
specific needs

Special thanks to Tom Wilson,
creator of Ziggy

