Explicit Communication Architectures for
High-End Computing

Bill Dally
Computer Systems Laboratory

Stanford University
April 20 2005

Salishan: 1 April 20, 2005

The Problem: Sustained perf/$

e Capability: Maximum sustained performance for X dollars
— (X ~ $200M)
e Capacity: Maximum sustained performance per dollar

 Either way goal is “Sustained performance per dollar”
— Only difference is scalability (which you have to pay for)

e Sustained performance is blend of performance on
— Compute-limited part (FLOPS)
— Local memory bandwidth limited part (GB/s — local)
— Global bandwidth limited part (GB/s — global)

e Different elements have different sensitivity to cost

Salishan: 2 April 20, 2005

Technology makes arithmetic cheap and bandwidth
expensive

—{ [+—0.5mm 100s of FPUs per chip
64-bit EPU | ® , $0.50/GFLOPS
(to scale)/ 90r}$r20(8h|p 50mW/GFLOPS
50pJ/FLOP 1GHz |

1 clock

40GB/s off-chip BW
$5/GB/s
0.25W/GB/s
|

Cost of BW increases
with distance
4x over backplane
. 12mm , 6Xx over cable
25X VSR optics

Cost Is dominated by bandwidth (and memory)

e Arithmetic is cheap $0.50/GFLOPS,
— (200GFLOPS chips)

e Memory is $200/GByte, ~$10/GB/s
— 1GByte of memory costs 400GFLOPS
— 1GB/s of bandwidth costs 20GFLOPS

e Global bandwidth moderate cost
— $1 (board), $4 (backplane), $25 (fiber) per GB/s

— 2GFLOPS (board), 8GFLOPS (backplane),
50GFLOPS (global)

XXX

Salishan: 4 April 20, 2005

Bandwidth i1s the critical issue, not FLOPS

e Bandwidth drives cost
— 1WPS of memory BW = 160 FLOPS
— 1WPS of global BW = 800FLOPS (2 fiber hops)
— These ratios are getting larger over time

e Goal is to make efficient use of this costly, scarce resource
— Keep it busy
e Latency hiding
— 500 words in flight today 1000s in near future
e QOverprovision arithmetic
— To keep expensive BW occupied
— Use it efficiently
e Transfer only needed data (short cache lines)
e Avoid transfers where possible (locality)

Salishan: 5 April 20, 2005

Exposed Communication

e Bandwidth is the critical resource
— Make its use visible
— Enable optimization by programmer and compiler

e Exploit producer-consumer locality

e Predictable and controllable storage — enables compiler
e Hides latency — with precision

e Enables more FLOPS per chip (per unit BW)

Salishan: 6 April 20, 2005

Register Hierarchy

e To expose communication,
make storage explicit

. . LRFs &
e Communication takes place |
both between levels and
within a level

Switch

CL G \Y €

Salishan: 7

April 20, 2005

Producer-Consumer Locality

loop over cells

flux[i] = ...

loop over cells

.= f(Flux[i]....)

Salishan: 8 April 20, 2005

Explicitly block into SRF

loop over cells
flux[i1] = ...

loop over cells
. = F(flux[i1],--.)

gather

scatter C»m)

DRAM SRFs LRFs

-a,

Salishan: 9

Explicitly block into SRF

loop over cells Flux passed
flux[i] = ...

through SRF,

loop over cells NO memory

. = f(flux[i],...) traffic

scatter Qm)

“ED

DRAM SRFs LRFs

Explicitly block into SRF

loop over cells
fluxfi] = ... Explicit re-use
loop over cells of C_e”S’ no
. = F(flux[1],--.) MISSES

scatter

“ED

DRAM SRFs LRFs

Salishan: 11

Stream loads/stores hide latency
(1000s of words in flight)

gather
. m< - D, LD Cells,
“EI—- D Calls

B c:1s N LD Cels,
e ST Cells,

DRAM SRFs LRFs
LD Cells,

ST Cells,

Salishan: 12 April 20, 2005

Explicit storage enables simple, efficient execution

All needed data and
Instructions on-chip

LD Cells0 :
NO MISSEeS

LD Cells,

LD Cells,

ST Cells,

LD Cells,

ST Cells,

Salishan: 13 April 20, 2005

Caches are controlled via a “wet noodle”

LD CeIIsO LD CeIIsO
LD CeIIs1 LD CeIIs1

LD Cells,

ST Cells, LD Cells,

LD Cells3

ST Cells, ST Cells,

Salishan: 14 April 20, 2005

Caches are contro

99% hit rate, 1
miss costs 100s of
cycles

LD Cells, LL
LD Cells, LD Cells,

LD Cells,

ST Cells, LD Cells,

LD Cells,

ST Cells, ST Cells,

Salishan: 15 April 20, 2005

Explicit storage vs. Cache

e All data and instructions local before starting work
— Vvs. periodic misses with high penalties
— No unexpected conflict/capacity misses

e Only needed data loaded
— vs. full cache line
— VvsS. read on allocate

e No traffic consumed for dead data
— Vvs. writeback of all dirty data (dead or alive)

Salishan: 16 April 20, 2005

Explicit Storage vs. Vectors

e Similar concept at a larger scale
e Records vs. words
— Larger burst size in DRAMs

e Transfer 1,000 — 10,000 words per reference

— VvS. 64-128
— Able to hide Latency x Bandwidth (500 today and growing)

e V\ector registers ~ LRFs
— SRF is new (and needed) level of hierarchy

Salishan: 17 April 20, 2005

Benchmark Memory Usage

100%
80% B Regular
temporal
O Irregular
temporal
60% W Regular
prod-cons
O Irregular
40% prod-cons
O Post-store
0% W Prefetch
O% . I I |

FFT 2D Rijndael Depth MPEG2E FEM3D FEM2D MD

Salishan: 18 April 20, 2005

Execution Times

Execution Time (Normalized to SRF)

HHHH

Bl Prefetch stalls
| O Resource stalls
| B Memory stalls
@ Compute

il

HHHHHHHHH :

Salishan: 19

D_
o

Z

U)ID:

FFT 2D

==

Iﬂi

LL
al
o
Z

LL
o
7))

Rijndael

O

Z pa

IDﬁ

MPEG2E

LL LL
£33 5
@ Z

ID:

FEM 3D

LL LL
¥ 23
wiTx 2
FEM 2D

SRF

NoPF []

HBW
RBW

MD

April 20, 2005

Cache Miss Behavior

Salishan: 20

; LL
m%%
ID:Z

Rijndael

Depth

MPEGZ2E

B Non-temp
load misses

O Temp data
load misses

B Non-temp
load hits

O Temp data
load hits

[Stores

April 20, 2005

Locality — requires both HW and SW

e Hardware provides explicit storage hierarchy

e Software maps objects to this hierarchy to minimize bandwidth
— Can’t do the SW without the HW

SsubXFlux(.) { SubXYFlux(..) {
loop over elements loop over elements
compute X Tlux compute X Flux

compute Y Tlux

subYFIux(.) {
loop over elements

compute Y Tlux

Explicit storage enables simple, efficient execution unit

scheduling

SW Pipeline

One Iiteration

@
o
S E
— n
[=
n u —
5 =
N 4
= S
moDo o
s e
SE ©
ern__.b X o
5 £ o
Qg . =
E o 00
O =S > @©
On O c
[0
[T
| 00
aoa
EEEREEEEE N
%ﬁ%%m

(] (LT, TR (T T 0 D e

0 (0 (T

April 20, 2005

MIIIITD OO
m ﬁ___mm____é.m_ %l

00000000
22222222

EEREEEEEEN

00000000

00000000000000

AT

Stream scheduling exploits explicit storage to
reduce bandwidth demand

Read-Only Table Lookup Data
(Master Element)

StreamFEM application

I EIementI

Face I

1042000
1042000

1 B0
1648600

1REROD0

1CE 2000
JRSE000
10EEH00
1HEE000
1080000
eaoee
1088000
ToaE000
1068000
106000
1072000
FUTEDCO
10TEH00
JOTEOON
1OEBOG0
JeEEong
1088000
RBEG
1OEEO00
oo
102000
T0enog
1 DB EI00
168000
Trepoco
1902000
1104000
EREC el

WIS

Numerical
Clity

Cell

e e TR

o S e g

e B

o 4 9

e L A T B

b

e e

Tp———————

e e

R

SRS

g —

P e g

Elements I

Elements I

=]

e e

TR

[T (e —— i —

[g —— —

T ot ok o R ok e, e

R T T AR o

o

B e
B M

[e —

-

Prefetching, reuse, use/def, limited spilling

Bandwidth- (and memory-) centric architecture
A recipe

e Provide most economical memory bandwidth and capacity
— Commodity DRAM chips (DDR-2 or GDDR or XDR)

e Need chips to connect to these DRAMs
— Fill these chips with
e 64-b FPUs — 100s - overprovision for compute-limited parts
e Local storage — to reduce demand on bandwidth
e Connect these chips together with an efficient network
— High-radix routers
— High-speed signaling

Network Network
Interface Interface

Interconnection Network

Salishan: 24 April 20, 2005

First provision memory (capacity & bandwidth)

e Commodity DRAM
— $200/GByte,
— $10/GByte/s

e No pin multiplexing

Salishan: 25 April 20, 2005

Fill memory interface chip with FPUs regs and local
memory (and switches)

e Attach as much memory as one
chip can handle with no pin
multiplexing

— 2GBytes

— 40Gbytes/sec
e $400 of memory
e $200 Chip

e Fill chip with FPUs and explicit
storage hierarchy

Salishan: 26 April 20, 2005

Connect these nodes together with an efficient network

e Bandwidth taper driven by cost
e Flat on PCB
e 4:1 in cabinet

8:1 across system

Salis

Merrimac — Streaming Supercomputer 23

Backplane —__
Board ~
Node __

> Node oo Node Board 2

64GBytes/s 2 16
16 Nodes Backplane 2
1K FPUS [) Board 32 32 Boards
2TFLOPS
512 Nodes
32GBytes 39K EPUs ® ® Backplane 32
64TFLOPS
s [
12GBytes/s
32+32 pairs /[On-Board Network
= | |
48GBytes/s
128+128 pairs g [| .]
ntra-Cabinet Network
6” Teradyne GbX O ! W
768GBytes/s | | | |
2K+2K links [Inter-Cabinet Network]
Ribbon Fiber

Merrimac Application Results

Application Sustained FP Ops / LRF Refs SRF Refs Mem Refs
GFLOPS Mem Ref

StreamFEM3D : : 153.0M 6.3M 1.8M
(Euler, quadratic) (95.0%) (3.9%) (1.1%)

StreamFEM3D : : 186.5M 7.7TM 2.8M
(MHD, constant) (99.4%) (0.4%) (0.2%)

StreamMD . : 90.2M 1.6M 0.7M
(grid algorithm) (97.5%) (1.7%) (0.8%)

GROMACS : . 108M 4.2M 1.5M
(95.0%) (2.9%) (1.3%)

StreamFLO .) 234.3M 7.2M 3.4M
(95.7%) (2.9%) (1.4%)

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations

Applications achieve high performance and

make good use of the bandwidth hierarchy

Cell

e Cell is a stream processor
e “Local Store” in each SPE is equivalent to an SRF
e All of the software techniques we have developed can be applied to Cell

Salishan: 30 April 20, 2005

Conclusion: Explicit communication solves the hard
problem: bandwidth

e Bandwidth is the critical resource (latency can be hidden)
— Minimize demand
— Keep it busy
e Explicit communication (storage) optimizes bandwidth
— Producer-consumer locality reduces bandwidth demand
— Latency well hidden — no misses — 1000s of outstanding references
— Precise storage management
e Fetch only needed data, No writes of dead data
e Stream compilation efficiently exploits explicit communication
— Also enables simple, efficient ALU scheduling

e Merrimac establishes the feasiblity of this approach
— Excellent simulated performance on wide range of scientific applications

e Cell is a stream processor w/ explicit communication
— Stream compilation can be applied to cell-based machines.

Salishan: 31 April 20, 2005

