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The Problem: Sustained perf/$

• Capability: Maximum sustained performance for X dollars
– (X ~ $200M)

• Capacity: Maximum sustained performance per dollar

• Either way goal is “Sustained performance per dollar”
– Only difference is scalability (which you have to pay for)

• Sustained performance is blend of performance on
– Compute-limited part (FLOPS)
– Local memory bandwidth limited part (GB/s – local)
– Global bandwidth limited part (GB/s – global)

• Different elements have different sensitivity to cost
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Technology makes arithmetic cheap and bandwidth 
expensive

100s of FPUs per chip
$0.50/GFLOPS
50mW/GFLOPS

40GB/s off-chip BW
$5/GB/s

0.25W/GB/s

Cost of BW increases 
with distance

4x over backplane
6x over cable

25x VSR optics
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Cost is dominated by bandwidth (and memory)

• Arithmetic is cheap $0.50/GFLOPS, 
– (200GFLOPS chips)

• Memory is $200/GByte, ~$10/GB/s
– 1GByte of memory costs 400GFLOPS
– 1GB/s of bandwidth costs 20GFLOPS

• Global bandwidth moderate cost
– $1 (board), $4 (backplane), $25 (fiber) per GB/s
– 2GFLOPS (board), 8GFLOPS (backplane), 

50GFLOPS (global)
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Bandwidth is the critical issue, not FLOPS 

• Bandwidth drives cost
– 1WPS of memory BW = 160 FLOPS
– 1WPS of global BW = 800FLOPS (2 fiber hops)
– These ratios are getting larger over time

• Goal is to make efficient use of this costly, scarce resource
– Keep it busy

• Latency hiding
– 500 words in flight today 1000s in near future

• Overprovision arithmetic
– To keep expensive BW occupied

– Use it efficiently
• Transfer only needed data (short cache lines)
• Avoid transfers where possible (locality)
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Exposed Communication

• Bandwidth is the critical resource
– Make its use visible
– Enable optimization by programmer and compiler

• Exploit producer-consumer locality
• Predictable and controllable storage – enables compiler
• Hides latency – with precision
• Enables more FLOPS per chip (per unit BW)



Salishan: 7 April 20, 2005

Register Hierarchy

• To expose communication, 
make storage explicit

• Communication takes place 
both between levels and 
within a level
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Producer-Consumer Locality

loop over cells
...
flux[i] = ...
...

loop over cells
...
... = f(flux[i],...)
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Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)
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Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Flux passed 
through SRF, 
no memory 

traffic
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Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Explicit re-use 
of Cells, no 

misses
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Stream loads/stores hide latency
(1000s of words in flight)

DRAM

Cells

SRFs

Cellsgather

LRFs

fn1

Flux fn2

Cells

Cells

scatter
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Explicit storage enables simple, efficient execution

All needed data and 
instructions on-chip 

no misses



Salishan: 14 April 20, 2005

Caches are controlled via a “wet noodle”
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Caches are controlled via a “wet noodle”99% hit rate, 1 
miss costs 100s of 

cycles



Salishan: 16 April 20, 2005

Explicit storage vs. Cache

• All data and instructions local before starting work
– vs. periodic misses with high penalties
– No unexpected conflict/capacity misses

• Only needed data loaded
– vs. full cache line
– vs. read on allocate

• No traffic consumed for dead data
– vs. writeback of all dirty data (dead or alive)
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Explicit Storage vs. Vectors

• Similar concept at a larger scale
• Records vs. words

– Larger burst size in DRAMs

• Transfer 1,000 – 10,000 words per reference
– vs. 64-128
– Able to hide Latency x Bandwidth (500 today and growing)

• Vector registers ~ LRFs
– SRF is new (and needed) level of hierarchy



Salishan: 18 April 20, 2005

Benchmark Memory Usage
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Execution Times
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Cache Miss Behavior
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Locality – requires both HW and SW

• Hardware provides explicit storage hierarchy
• Software maps objects to this hierarchy to minimize bandwidth

– Can’t do the SW without the HW

subXFlux(…) {
loop over elements
compute X flux

subYFlux(…) {
loop over elements
compute Y flux

subXYFlux(…) {
loop over elements
compute X flux
compute Y flux
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Explicit storage enables simple, efficient execution unit 
scheduling
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Stream scheduling exploits explicit storage to 
reduce bandwidth demand

StreamFEM application

Prefetching, reuse, use/def, limited spilling
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Bandwidth- (and memory-) centric architecture
A recipe

• Provide most economical memory bandwidth and capacity
– Commodity DRAM chips (DDR-2 or GDDR or XDR)

• Need chips to connect to these DRAMs
– Fill these chips with 

• 64-b FPUs – 100s - overprovision for compute-limited parts
• Local storage – to reduce demand on bandwidth

• Connect these chips together with an efficient network
– High-radix routers
– High-speed signaling
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First provision memory (capacity & bandwidth)

• Commodity DRAM 
– $200/GByte, 
– $10/GByte/s

• No pin multiplexing
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Fill memory interface chip with FPUs regs and local 
memory (and switches)

• Attach as much memory as one 
chip can handle with no pin 
multiplexing
– 2GBytes
– 40Gbytes/sec

• $400 of memory
• $200 Chip
• Fill chip with FPUs and explicit 

storage hierarchy
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Connect these nodes together with an efficient network

• Bandwidth taper driven by cost
• Flat on PCB
• 4:1 in cabinet
• 8:1 across system
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Merrimac – Streaming Supercomputer

Scalable from 2-TFLOP workstation to 2-PFLOP supercomputer
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Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations
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Cell

• Cell is a stream processor
• “Local Store” in each SPE is equivalent to an SRF
• All of the software techniques we have developed can be applied to Cell
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Conclusion: Explicit communication solves the hard 
problem: bandwidth

• Bandwidth is the critical resource (latency can be hidden)
– Minimize demand
– Keep it busy

• Explicit communication (storage) optimizes bandwidth
– Producer-consumer locality reduces bandwidth demand
– Latency well hidden – no misses – 1000s of outstanding references
– Precise storage management

• Fetch only needed data, No writes of dead data

• Stream compilation efficiently exploits explicit communication
– Also enables simple, efficient ALU scheduling

• Merrimac establishes the feasiblity of this approach
– Excellent simulated performance on wide range of scientific applications

• Cell is a stream processor w/ explicit communication
– Stream compilation can be applied to cell-based machines.


