
Salishan: 1 April 20, 2005

Explicit Communication Architectures for
High-End Computing

Bill Dally
Computer Systems Laboratory

Stanford University
April 20 2005

Salishan: 2 April 20, 2005

The Problem: Sustained perf/$

• Capability: Maximum sustained performance for X dollars
– (X ~ $200M)

• Capacity: Maximum sustained performance per dollar

• Either way goal is “Sustained performance per dollar”
– Only difference is scalability (which you have to pay for)

• Sustained performance is blend of performance on
– Compute-limited part (FLOPS)
– Local memory bandwidth limited part (GB/s – local)
– Global bandwidth limited part (GB/s – global)

• Different elements have different sensitivity to cost

Salishan: 3 April 20, 2005

Technology makes arithmetic cheap and bandwidth
expensive

100s of FPUs per chip
$0.50/GFLOPS
50mW/GFLOPS

40GB/s off-chip BW
$5/GB/s

0.25W/GB/s

Cost of BW increases
with distance

4x over backplane
6x over cable

25x VSR optics

Salishan: 4 April 20, 2005

Cost is dominated by bandwidth (and memory)

• Arithmetic is cheap $0.50/GFLOPS,
– (200GFLOPS chips)

• Memory is $200/GByte, ~$10/GB/s
– 1GByte of memory costs 400GFLOPS
– 1GB/s of bandwidth costs 20GFLOPS

• Global bandwidth moderate cost
– $1 (board), $4 (backplane), $25 (fiber) per GB/s
– 2GFLOPS (board), 8GFLOPS (backplane),

50GFLOPS (global)

Salishan: 5 April 20, 2005

Bandwidth is the critical issue, not FLOPS

• Bandwidth drives cost
– 1WPS of memory BW = 160 FLOPS
– 1WPS of global BW = 800FLOPS (2 fiber hops)
– These ratios are getting larger over time

• Goal is to make efficient use of this costly, scarce resource
– Keep it busy

• Latency hiding
– 500 words in flight today 1000s in near future

• Overprovision arithmetic
– To keep expensive BW occupied

– Use it efficiently
• Transfer only needed data (short cache lines)
• Avoid transfers where possible (locality)

Salishan: 6 April 20, 2005

Exposed Communication

• Bandwidth is the critical resource
– Make its use visible
– Enable optimization by programmer and compiler

• Exploit producer-consumer locality
• Predictable and controllable storage – enables compiler
• Hides latency – with precision
• Enables more FLOPS per chip (per unit BW)

Salishan: 7 April 20, 2005

Register Hierarchy

• To expose communication,
make storage explicit

• Communication takes place
both between levels and
within a level

Salishan: 8 April 20, 2005

Producer-Consumer Locality

loop over cells
...
flux[i] = ...
...

loop over cells
...
... = f(flux[i],...)

Salishan: 9 April 20, 2005

Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Salishan: 10 April 20, 2005

Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Flux passed
through SRF,
no memory

traffic

Salishan: 11 April 20, 2005

Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Explicit re-use
of Cells, no

misses

Salishan: 12 April 20, 2005

Stream loads/stores hide latency
(1000s of words in flight)

DRAM

Cells

SRFs

Cellsgather

LRFs

fn1

Flux fn2

Cells

Cells

scatter

Salishan: 13 April 20, 2005

Explicit storage enables simple, efficient execution

All needed data and
instructions on-chip

no misses

Salishan: 14 April 20, 2005

Caches are controlled via a “wet noodle”

Salishan: 15 April 20, 2005

Caches are controlled via a “wet noodle”99% hit rate, 1
miss costs 100s of

cycles

Salishan: 16 April 20, 2005

Explicit storage vs. Cache

• All data and instructions local before starting work
– vs. periodic misses with high penalties
– No unexpected conflict/capacity misses

• Only needed data loaded
– vs. full cache line
– vs. read on allocate

• No traffic consumed for dead data
– vs. writeback of all dirty data (dead or alive)

Salishan: 17 April 20, 2005

Explicit Storage vs. Vectors

• Similar concept at a larger scale
• Records vs. words

– Larger burst size in DRAMs

• Transfer 1,000 – 10,000 words per reference
– vs. 64-128
– Able to hide Latency x Bandwidth (500 today and growing)

• Vector registers ~ LRFs
– SRF is new (and needed) level of hierarchy

Salishan: 18 April 20, 2005

Benchmark Memory Usage

0%

20%

40%

60%

80%

100%

FFT 2D Rijndael Depth MPEG2E FEM 3D FEM 2D MD

Regular
temporal
Irregular
temporal
Regular
prod-cons
Irregular
prod-cons
Post-store

Prefetch

Salishan: 19 April 20, 2005

Execution Times

0

1

2

3

4

5

6

7

8

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

S
R

F
H

B
W

R
B

W
N

oP
F

FFT 2D Rijndael Depth MPEG2E FEM 3D FEM 2D MD

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

iz
ed

 to
 S

RF
)

Prefetch stalls
Resource stalls
Memory stalls
Compute

Salishan: 20 April 20, 2005

Cache Miss Behavior

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
BW

R
BW

N
oP

F
H

BW

R
BW

N
oP

F

H
BW

R
BW

N
oP

F
H

BW

R
BW

N
oP

F
H

BW

R
BW

N
oP

F

H
BW

R
BW

N
oP

F
H

BW

R
BW

N
oP

F

FFT 2D Rijndael Depth MPEG2E FEM 3D FEM 2D MD

Non-temp
load misses
Temp data
load misses
Non-temp
load hits
Temp data
load hits
Stores

Salishan: 21 April 20, 2005

Locality – requires both HW and SW

• Hardware provides explicit storage hierarchy
• Software maps objects to this hierarchy to minimize bandwidth

– Can’t do the SW without the HW

subXFlux(…) {
loop over elements
compute X flux

subYFlux(…) {
loop over elements
compute Y flux

subXYFlux(…) {
loop over elements
compute X flux
compute Y flux

Salishan: 22 April 20, 2005

Explicit storage enables simple, efficient execution unit
scheduling

0

10

20

30

40

50

60

70

80

90

100

110

120

0

10

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

ComputeCellInt kernel from
StreamFem3D

Over 95% of peak with simple
hardware

One iteration SW Pipeline

Salishan: 23 April 20, 2005

Stream scheduling exploits explicit storage to
reduce bandwidth demand

StreamFEM application

Prefetching, reuse, use/def, limited spilling

Compute
Flux

States

Compute
Numerical

Flux

Element
Faces

Gathered
Elements

Numerical
Flux

Gather
Cell

Compute
Cell

Interior

Advance
Cell

Elements
(Current)

Elements
(New)

Read-Only Table Lookup Data
(Master Element)

Face
Geometry

Cell
Orientations

Cell
Geometry

Salishan: 24 April 20, 2005

Bandwidth- (and memory-) centric architecture
A recipe

• Provide most economical memory bandwidth and capacity
– Commodity DRAM chips (DDR-2 or GDDR or XDR)

• Need chips to connect to these DRAMs
– Fill these chips with

• 64-b FPUs – 100s - overprovision for compute-limited parts
• Local storage – to reduce demand on bandwidth

• Connect these chips together with an efficient network
– High-radix routers
– High-speed signaling

Salishan: 25 April 20, 2005

First provision memory (capacity & bandwidth)

• Commodity DRAM
– $200/GByte,
– $10/GByte/s

• No pin multiplexing

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

DDR2
SDRAM

Salishan: 26 April 20, 2005

Fill memory interface chip with FPUs regs and local
memory (and switches)

• Attach as much memory as one
chip can handle with no pin
multiplexing
– 2GBytes
– 40Gbytes/sec

• $400 of memory
• $200 Chip
• Fill chip with FPUs and explicit

storage hierarchy

Salishan: 27 April 20, 2005

Connect these nodes together with an efficient network

• Bandwidth taper driven by cost
• Flat on PCB
• 4:1 in cabinet
• 8:1 across system

Salishan: 28 April 20, 2005

Merrimac – Streaming Supercomputer

Scalable from 2-TFLOP workstation to 2-PFLOP supercomputer

16 x
XDR-DRAM

2GBytes

Stream
Processor

64 FPU
128 GFLOPS

On-Board Network

Intra-Cabinet NetworkE/O
O/E

Inter-Cabinet Network

Bisection 24TBytes/s

64GBytes/s

12GBytes/s
32+32 pairs

48GBytes/s
128+128 pairs

6” Teradyne GbX

768GBytes/s
2K+2K links

Ribbon Fiber

Backplane
Board

Node

Node
2

Node
16

Board 32

Board 2
16 Nodes
1K FPUs
2TFLOPS

32GBytes

Backplane 2
32 Boards
512 Nodes
32K FPUs
64TFLOPS
1TBytes

Backplane 32

16 x
XDR-DRAM

2GBytes

Stream
Processor

64 FPU
128 GFLOPS

On-Board Network

Intra-Cabinet NetworkE/O
O/E

Inter-Cabinet Network

Bisection 24TBytes/s

64GBytes/s

12GBytes/s
32+32 pairs

48GBytes/s
128+128 pairs

6” Teradyne GbX

768GBytes/s
2K+2K links

Ribbon Fiber

Backplane
Board

Node

Node
2

Node
16

Board 32

Board 2
16 Nodes
1K FPUs
2TFLOPS

32GBytes

Backplane 2
32 Boards
512 Nodes
32K FPUs
64TFLOPS
1TBytes

Backplane 32

Salishan: 29 April 20, 2005

Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations

1.5M
(1.3%)

4.2M
(2.9%)

108M
(95.0%)

9.7*38.8*GROMACS

3.4M
(1.4%)

7.2M
(2.9%)

234.3M
(95.7%)

7.4*12.9*StreamFLO

0.7M
(0.8%)

1.6M
(1.7%)

90.2M
(97.5%)

12.1*14.2*StreamMD
(grid algorithm)

2.8M
(0.2%)

7.7M
(0.4%)

186.5M
(99.4%)

13.839.2StreamFEM3D
(MHD, constant)

1.8M
(1.1%)

6.3M
(3.9%)

153.0M
(95.0%)

17.131.6StreamFEM3D
(Euler, quadratic)

Mem RefsSRF RefsLRF RefsFP Ops /
Mem Ref

Sustained
GFLOPS

Application

Applications achieve high performance and
make good use of the bandwidth hierarchy

Salishan: 30 April 20, 2005

Cell

• Cell is a stream processor
• “Local Store” in each SPE is equivalent to an SRF
• All of the software techniques we have developed can be applied to Cell

Salishan: 31 April 20, 2005

Conclusion: Explicit communication solves the hard
problem: bandwidth

• Bandwidth is the critical resource (latency can be hidden)
– Minimize demand
– Keep it busy

• Explicit communication (storage) optimizes bandwidth
– Producer-consumer locality reduces bandwidth demand
– Latency well hidden – no misses – 1000s of outstanding references
– Precise storage management

• Fetch only needed data, No writes of dead data

• Stream compilation efficiently exploits explicit communication
– Also enables simple, efficient ALU scheduling

• Merrimac establishes the feasiblity of this approach
– Excellent simulated performance on wide range of scientific applications

• Cell is a stream processor w/ explicit communication
– Stream compilation can be applied to cell-based machines.

