
High-Speed Computing Conference, Salishan, April 2004

New Architectural Technologies
for Shared-Memory Systems

Josep Torrellas

University of Illinois
http://iacoma.cs.uiuc.edu

< 2 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Major emphasis on:
– Programmability & ease of use
– Cost-effective fault tolerance

Sea of caching

What to Expect 10 Years from Now

Multiple cores/chip, multithreaded
Very high frequency: 15 GHz

Simple engines
in memory subsystem

Far away memory
hierarchy

< 3 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Emerging Architectural Technologies

Speculative threading

Transparent checkpointing

Intelligence in the memory subsystem

Warning: I will not mention the word MPI once

< 4 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Emerging Architectural Technologies

Speculative threading

Transparent checkpointing

Intelligence in the memory subsystem

< 5 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Multithreaded Core

Multithreading State of the Art: Helper Threads

Thread 0

Frequently
Missing Load

Hard to Predict
Branch

Thread 0

Helper
Thread 1Helper

Thread 2

Thread 1 Thread 2

< 6 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Multithreaded Core

From Prefetching to Speculative Multithreading

Thread 0
Thread 1 Thread 2

Thread 0

Loop

Call F()

X=Squash

= X

= X

It0

Thread 1

It1

Thread 2

It2

< 7 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Idea in Speculative Multithreading (SM)

Current processors: speculate within the pipeline

CPU

Cache

Entering the speculative section:
Hardware checkpoints the register state

Executing the speculative section:
Buffer all memory updates in the cache -- cannot update mem
Mark cache lines read and written
Monitor for errors or violations

SM: speculate on code long enough that state overflows into
cache hierarchy

invalidation

If error or violation occurs:
Hardware invalidates updated cache lines & restores regs

Else: Successful end of speculation:
Reset marks & allow eviction of updated cache lines

< 8 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

SM to Ease Parallel Programming

Speculative Synchronization (Atomic Sections)

Enter Atomic

Exit Atomic

Enter Atomic

Exit Atomic

Thread 0 Thread 1

BarrierBarrier

Thread 0

Barrier

Thread 1 Thread 2

X =
= X

OK to write coarse atomic sections or put additional barriers

< 9 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

SM to Help Debugging

On the fly undo/redo

Thread
Cache

instr
instr

instr
instr

instr
instr

instr
instr

instr

Can be used to debug data races in multithreaded codes

< 10 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

SM to Help Debugging

Watch memory location and trigger monitoring function

instr

instr
instr

*p = ...
instr

instr
instr

instr

Watch(addr, monitor_fn1)
data

Cache
Watched?

addr1

PC

Monitor_fn1 (Addr){
return(addr != 0)

}

Rest of Monitoring
FunctionProgram

Main
Thread

Program

< 11 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

SM to Help Debugging

Automatically fix a program

Assert (ptr<maxptr && ptr>minptr)

fails

ptr0 ptr1 ptr2

ptr0 ptr2ptr1

Main
Program

Failed
Assertion

maxptr minptr ptr

< 12 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Implications for Algorithms/Applications

Easier to write parallel programs
– coarse synchronization OK

Easier to debug programs… in production runs
– fine grain memory protection (Watch)
– checker thread performs distributed consistency checks on

data structures
– support deterministic replay of code sections

< 13 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Emerging Architectural Technologies

Speculative threading

Transparent checkpointing

Intelligence in the memory subsystem

< 14 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Checkpointing and Rollback Recovery

Faults (especially transient) will remain a challenge in future

Currently:
– Apps often manage their checkpointing
– Apps often stop for a long time to write their checkpoint to disk

Goal:
– Checkpointing transparent to app
– Low cost:

• No HW changes to processors/caches/memories/disks
• No changes to OS

– Effective: High availability with low overhead

< 15 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Hardware-Aided Checkpointing *

Global interrupt every 100 ms creates checkpoint
– CPUs write back registers and dirty cache lines to memory
– Main memory is the checkpoint state

Write-Back
Dirty Lines

Checkpoint (<1ms)

Timer
Interrupt

Sync

Execute (100 ms)

Save CPU
Registers

P0

P1

P2

Time

* Experiments performed in a simulated 16-processor machine

< 16 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Hardware-Aided Checkpointing

Between checkpoints:
– When machine is about to modify line in memory for 1st time:

mem controller saves old value of line in memory log

Mem

Home Memory of Line X

Wr Line XRd Line X Wr Log

Wr Line X

Memory
Controller

To ensure main memory “is safe”
– Mem controllers protect main memory by keeping distributed

parity like RAID-5
– Can tolerate loss of a node

< 17 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Execute

Recover the Loss of a Node Under 1 Second

Repair Log

~100ms

Rollback

~490ms

Repair Data

~20s

Degraded (~20s)Unavailable (~840ms)

Checkpoint

Detection

80ms

P0

P1

P2

P3

Time

100ms

Bzzzt!

Self-Check
Reroute

50ms

< 18 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

“Recovering” I/O too

Add Pseudo Device Driver (PDD) between kernel and device drivers

Kernel

Pseudo Device Driver (PDD)

Device Driver (DD)

Device

X

Rollback

Logical TimeReq1 Req2

Checkpoint

Checkpoint

Out1 Out2

X

Rollback

I/O output requests redirected to PDD, which buffers it

After next checkpoint, the I/O requests passed to DD and committed in
background

< 19 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Implications for Algo/Apps

No need to add checkpointing code to your app

Very fast, transparent recovery from many faults:
– transient faults
– permanent faults: up to the loss of a node

< 20 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Emerging Architectural Technologies

Speculative threading

Transparent checkpointing

Intelligence in the memory subsystem

< 21 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Intelligence in the Memory System

Simple, narrow-issue engines associated with:
– memory controllers
– L3 caches

Execute “intelligent memory operations”:
– software threads running “in memory”
– hardware operations

< 22 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Intelligent Memory Operations

Software Threads

Data preparation, page table
pretouch

Reduction
Synchronization
Scatter/gather
Bit operations
Execute memory-intensive

code sections

Hardware Operations

Prefetching
Logging
Checkpointing
Cache coherence management
Memory RAIDing

< 23 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Memory Side Prefetching

Interconnect

Memory module

Memory Controller

L1

Mem Proc

L2

1

2

3

4

5

< 24 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Implications for Algo/Apps

Use “in memory” software threads
– How to manage heterogeneous threads (proc and memory)
– Map what parts of the program where?
– How to synchronize processor and memory threads?
– How to maintain data coherence?

< 25 #>Josep Torrellas: New Technologies for Shared-Memory Systems. April 2004

Final Thoughts

Ease of programming, in the presence of:
– software bugs
– transient faults

Use transistor surplus for debugging support

Continuous optimization in the background (intelligence
in the mem system)

High-Speed Computing Conference, Salishan, April 2004

New Architectural Technologies
for Shared-Memory Systems

Josep Torrellas

University of Illinois
http://iacoma.cs.uiuc.edu

