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The vision for this conference

"…to improve communications, 
develop collaborations, solve 
problems of mutual interest, and 
provide effective leadership in the 
field of high-speed computing“

How well have we succeeded?
What will our future challenges be? 



Communications
We have learned many things at this conference about:
• Monte Carlo
• Functional languages
• Big code development
• Floating point arithmetic
• Lagrangian hydrocodes
• Anthropomorphic programming
• Performance characteristics

We understand each other’s language better now.



Collaborations
Salishan has been a fruitful source of collaboration:
• DOE and DOD

- The historical alliance has remained strong here
• Labs and academia

- In both computer and computational science
• Academia and industry

- It’s a great place to meet people
• Labs and industry

- Including a few “skunk works” projects
• Even labs and labs

Collaboration is a prerequisite of progress



Problem solving
I recall a few small examples:
• One night after dinner, Harry Jordan and I wanted to 

know “is Gauss-Seidel the same as red-black?”
- Answers varied from “that can’t be true” to “I hope so”
- Outcome was the 1986 SIAM Journal paper by Harry 

and Loyce Adams entitled “Is SOR color-Blind?”
• Morven Gentleman and I talked to George Zimmerman 

about using integers (or unnormalized floats) to make 
parallel Monte Carlo accumulation reproducible

- Integer accumulators showed up in George’s 1986 talk
• We have also addressed big problems, like the small 

size and smaller clout of the supercomputer business
- But we haven’t made such things better, at least so far



Leadership
In my estimation we haven’t done so well here
• Supercomputing is in deep trouble

- Architectures — PC-based clusters dominate
- Languages — MPI reigns supreme
- Applications — Industry has few, arguably none

• We know there are alternatives to the status quo
- but we throw up our hands at changing things

• Our future success is in doubt
- Our supercomputers are impossible to use well and

quite difficult to even use poorly
- Few think “business as usual” takes us to petaflops

• We really need to do something about the situation



Activities for the next 25 years
• Continue to teach each other what we know
• Continue to collaborate on our common problems
• Work to improve high speed computing systems in:

- Programmability
- Breadth of applicability
- Performance

• Work to improve understanding of the issues by others: 
- Government
- The press

I’ll get the ball rolling by talking about programmability



What’s wrong with MPI?
• MPI directly reflects an architectural idea

- “Nodes” communicating via heavyweight messages
• If MPI is all there is, why build a better architecture?

- How does the market reward your “additional features”?
• Architecture and language are inextricably linked

- To improve either, we must improve both
• We need better programming languages:

- To enhance programmer productivity
- To allow fine-grain, anonymous communication
- To enable dynamic scheduling and load balancing
- To exploit diverse forms of parallelism
- To improve computer architecture



We used to discuss languages here
• Fortran in all its evolutionary forms
• Functional languages, especially Id and Sisal
• Ada
• SPMD languages like The Force and OpenMP
• Object-oriented languages, especially C++, and Java
• Scripting languages such as Python
• Co-array Fortran, UPC, and Titanium

The “languages” subject has become somewhat moot



Where do languages come from?

Independent
Software Vendors

Lone Hardware Vendors

Government Labs

Hardware Vendor Consortiums

Academia

Open-source
Fanatics

F77F66

Cray
Microtasking

NX, et al.

Vienna Fortran
FortranD

CMFortran

Split-C

ACPCP

F90/95
Java

CAFSHMEM

C

MPI

UPC

HPF

OpenMP

C++

PVM

Mathematica

Linda

Maple

Perl

Python

Ruby

Smalltalk

APL

NESL
ZPL

SAC

KeLPPOOMA

C*

Matlab

SISAL

Titanium



Cray is designing a new language
• Its name is Chapel
• We have most of the compiler technology needed

- Dependence analysis
- Incremental interprocedural fact propagation
- Loop nest optimizations, e.g. wavefronting
- Dynamic loop nest scheduling
- Parallelization of general reductions and recurrences
- Parallelization of memory updates
- Function inlining
- Procedure annotations
- More than just a compiler is required

• We think a new language is necessary to meet the 
productivity objectives of the DARPA HPCS effort

• We are hopeful it will help us sell computers



Chapel features
• Global view of computation and data structures
• Support for structured data & task parallelism

- data: foralls, domains (dense & sparse arrays, sets, 
graphs, …)

- task: co-begins, future variables, locale views, …
• Syntactic separation of concerns (locality, parallelism)
• Interprocedurally inferred latent type polymorphism
• Ability to tune for (or ignore) locality using domains
• User-extensible distributions, reductions, iterators, …
• Automatic resource management (threads, GC, …)
• Object-oriented features
• Generality
• An open-source implementation



Unsolved language problems
• How to ensure widespread adoption

- An open-source implementation is necessary, at least
- It can’t be too awful on typical hardware

• How to reconcile programmability and performance
- A possible answer is language “telescoping” using 

interprocedural type inference and cloning
- This can also help with software re-use
- Chapel includes this notion

• How to achieve both generality and composability
- A possible answer is using transactions to preserve 

invariants on program state
- Chapel will likely experiment with this idea
- Maybe a brief discussion of it is called for



The problem with state
• Functional languages tend to be highly composable, 

but there is no notion of state in functional languages
- Operations on state generally don’t commute

• Attempts to add state while preserving commutativity:
- Applicative State Transition systems (Backus)
- Monads (Wadler et al.)
- M-structures (Arvind et al.)

• A related fact: functional programs are deterministic
- Introducing state leads to non-determinism (e.g. races)

• Some kinds of nondeterminism are good 
- Any ordering that does not affect final results is OK
- Only the programmer understands the opportunities
- How can we tell good non-determinism from bad?



A histogramming example
const double in[];    //data to be histogrammed

const int f(double);  //f(x) is the bin of x

int h[];              //histogram, initially 0

for(i = 0; i < n; i++)

{

int k = f(in[i]);

h[k]++; 

}

• Try to do this in parallel with a functional language!

/* (∀int κ)(h[κ] = #{j|0≤j<i ∧ f(in[j])=κ}) */

/* (∀int κ)(h[κ] = #{j|0≤j<n ∧ f(in[j])=κ}) */



Histogramming in parallel
const double in[];  //data to be histogrammed

const int f(double);  //f(x) is the bin of x

int h[];         //histogram, initially 0

forall i in 0..n-1

{

int k = f(in[i]);

lock h[k];

h[k]++;

unlock h[k];

}

/* (∀int κ)(h[κ] = #{j|j∈Σ ∧ f(in[j])=κ}) */

/* (∀int κ)(h[κ] = #{j|0≤j<n ∧ f(in[j])=κ}) */

•Σ is the set of values i processed “so far”
•The loop instances commute with respect to the 
invariant
•Premature reads of h[ ] get non-deterministic 
garbage



What do the locks do?
• The locks guarantee the integrity of the invariant

- They protect whatever makes the invariant temporarily 
false

• As long as invariants describe all we care about in the 
computation and forward progress is made, all is well

- We have non-determinism “beneath the invariants”
- In the example, the set Σ captures that non-determinism

• Pretty clearly, the locks need to be lightweight
- Barriers won’t do the job

• Can we automate or at least verify lock insertion?
- If we had a language for the invariants, maybe so

• A partial step is to let the language handle the locks
- This is important to deal with deadlock at least
- Efficiency is another reason 



Atomic transactions on objects

const double in[]; //data to be histogrammed

const int f(double);  //f(x) is the bin of x

int h[]; //histogram, initially 0

forall i in 0..n-1 do

{

int k = f(in[i]);

with h[k] do {

h[k]++;

}

}

• This abstraction also allows compiler support and 
even permits implementation mechanisms other than 
locks



Nested, multi-object transactions
node *m;   //a node in an irregular adaptive mesh

with *m do {      //remove *m from the mesh

for (n = m->nbr, n != NIL, n = n->nbr){

with *n do {  //remove link from *n to *m

for (p = n->nbr, p != NIL, ... //etc

}

}

}

• In a naive implementation, deadlock could be 
commonplace

• If a sequence deadlocks or fails, preservation of the 
invariant requires that it be “undone”, reversing its side 
effects

/* (∀node μ)(∀node ν)(ν∈(μ->nbr)* ⇔ μ∈(ν->nbr)*) */



Conclusions
• It’s been a memorable and rewarding quarter-century
• The problems we now face are more serious than ever

- and we may even have forgotten a thing or two
• We need to continue to meet the challenges

— George A. Michael

“There is no limit to what
we can accomplish

provided
you don’t care who gets the credit”




