The Next Quarter-Century
at Salishan

Burton Smith
Cray Inc.

I ey — P S g

The vision for this conference

"...to Improve communications,
develop collaborations, solve
problems of mutual interest, and
provide effective leadership in the
field of high-speed computing®

How well have we succeeded?
What will our future challenges be?

R ANY

Communications

We have learned many things at this conference about:
» Monte Carlo

 Functional languages

* Big code development

» Floating point arithmetic

e Lagrangian hydrocodes

* Anthropomorphic programming

 Performance characteristics

We understand each other’s language better now.

S ey — P S g

Collaborations

Salishan has been a fruitful source of collaboration:
« DOE and DOD
- The historical alliance has remained strong here
* Labs and academia
- In both computer and computational science
Academia and industry
- It’s a great place to meet people
e Labs and industry
- Including a few “skunk works” projects
 Even labs and labs

Collaboration iIs a prerequisite of progress

S ey — P S g

Problem solving

| recall a few small examples:

e One night after dinner, Harry Jordan and | wanted to
know “is Gauss-Seidel the same as red-black?”

- Answers varied from “that can’t be true” to “I hope so”

- Qutcome was the 1986 SIAM Journal paper by Harry
and Loyce Adams entitled “Is SOR color-Blind?”

 Morven Gentleman and | talked to George Zimmerman
about using integers (or unnormalized floats) to make
parallel Monte Carlo accumulation reproducible
- Integer accumulators showed up in George’s 1986 talk
 We have also addressed big problems, like the small
size and smaller clout of the supercomputer business
- But we haven’t made such things better, at least so far

R ANY

Leadership

In my estimation we haven’t done so well here
e Supercomputing is in deep trouble
- Architectures — PC-based clusters dominate
- Languages — MPI reigns supreme
- Applications — Industry has few, arguably none
 We know there are alternatives to the status quo
- but we throw up our hands at changing things

e Qur future success is in doubt

- Our supercomputers are impossible to use well and
quite difficult to even use poorly

- Few think “business as usual’ takes us to petaflops
* We really need to do something about the situation

S ey — P S g

Activities for the next 25 years

e Continue to teach each other what we know

e Continue to collaborate on our common problems

« Work to improve high speed computing systems in:
- Programmability

- Breadth of applicability
- Performance

« \Work to improve understanding of the issues by others:
- Government
- The press

I'll get the ball rolling by talking about programmability

S ey — P S g

What’s wrong with MPI?

MPI directly reflects an architectural idea
- “Nodes” communicating via heavyweight messages
If MPI is all there is, why build a better architecture?
- How does the market reward your “additional features”?
Architecture and language are inextricably linked
- To improve either, we must improve both
We need better programming languages:
- To enhance programmer productivity
- To allow fine-grain, anonymous communication
- To enable dynamic scheduling and load balancing
- To exploit diverse forms of parallelism
- To improve computer architecture

S ey — P S g

We used to discuss languages here

e Fortran in all its evolutionary forms

* Functional languages, especially Id and Sisal

 Ada

« SPMD languages like The Force and OpenMP

* Object-oriented languages, especially C++, and Java
« Scripting languages such as Python

« Co-array Fortran, UPC, and Titanium

The “languages” subject has become somewhat moot

I ey — P S g

Where do languages come from?

Lone Hardware Vendors

SHMEM CAF Cray i
Microtasking

Java
CMFortran F66 —
Nx,$

//C
Open-source
Fanatics

™~

PCP \fc

Government Labs UPC 41

Hardware Vendor Consortiums
— OpenMP

— F77 — F90/95

s HPF

Independent
Software Vendors

FortranD

Bkl
Vienna Fortr;m\w,.

%,

o~

~N
Academia

S

n

— Split-C

R ANY

Cray Is designing a new language

 Its name is Chapel

 We have most of the compiler technology needed
- Dependence analysis
- Incremental interprocedural fact propagation
- Loop nest optimizations, e.g. wavefronting
- Dynamic loop nest scheduling
- Parallelization of general reductions and recurrences
- Parallelization of memory updates
- Function inlining
- Procedure annotations
- More than just a compiler is required

* We think a new language is necessary to meet the
productivity objectives of the DARPA HPCS effort

« We are hopeful it will help us sell computers

S ey — P S g

Chapel features

Global view of computation and data structures

Support for structured data & task parallelism

- data: foralls, domains (dense & sparse arrays, sets,
graphs, ...)

- task: co-begins, future variables, locale views, ...
Syntactic separation of concerns (locality, parallelism)
Interprocedurally inferred latent type polymorphism
Ability to tune for (or ignore) locality using domains
User-extensible distributions, reductions, iterators, ...
Automatic resource management (threads, GC, ...)
Object-oriented features
Generality
An open-source implementation

S ey — P S g

Unsolved language problems

 How to ensure widespread adoption
- An open-source implementation is necessary, at least
- It can’t be too awful on typical hardware

 How to reconcile programmability and performance

- A possible answer is language “telescoping” using
Interprocedural type inference and cloning

- This can also help with software re-use
- Chapel includes this notion

 How to achieve both generality and composability

- A possible answer is using transactions to preserve
Invariants on program state

- Chapel will likely experiment with this idea
- Maybe a brief discussion of it is called for

S ey — P S g

The problem with state

* Functional languages tend to be highly composable,
but there Is no notion of state in functional languages

- Operations on state generally don’t commute
o Attempts to add state while preserving commutativity:
- Applicative State Transition systems (Backus)
- Monads (Wadler et al.)
- M-structures (Arvind et al.)
« A related fact: functional programs are deterministic
- Introducing state leads to non-determinism (e.g. races)
e Some kinds of nondeterminism are good
- Any ordering that does not affect final results is OK
- Only the programmer understands the opportunities
- How can we tell good non-determinism from bad?

S ey — P S g

A histogramming example

const double inl]; //data to be histogrammed
const int f(double); //f(x) is the bin of x
int hl[]; //histogram, initially O
for(i = 0; i < n; i++)

{ /* (Vint x) (hlx] = #{j|0<j<i A £(in[j])=k}) */
int k = £(in[i]);
h[k] ++;
} /* (Vint x) (hix] = #{j|0<j<n A £(in[j])=x}) */
* Try to do this in parallel with a functional language!

I ey — P S g

Histogramming in parallel

const double inl]; //data to be histogrammed
const int f(double); //f(x) is the bin of x
int hl[]; //histogram, initially O

forall i in 0..n-1

{ /* (Vint x) (hik] = #{j|jeX A £(in[j]l)=x}) */
int k = £(in[i]);
lock hlk];
hl[k]++;
unlock h[k];

} /* (Vint) (hix] = #{j]|0<j<n A £(inl[j])=x}) */
-2 iy the set of values U processed “so-for”
*The loop instances commute with respect to the
Invariant
*Premature reads of h[] get non-deterministic
garbage

S ey — P S g

What do the locks do?

The locks guarantee the integrity of the invariant

- They protect whatever makes the invariant temporarily
false

As long as invariants describe all we care about in the
computation and forward progress is made, all is well

- We have non-determinism “beneath the invariants”

- In the example, the set = captures that non-determinism
Pretty clearly, the locks need to be lightweight

- Barriers won't do the job
Can we automate or at least verify lock insertion?

- If we had a language for the invariants, maybe so
A partial step is to let the language handle the locks

- This is important to deal with deadlock at least

- Efficiency is another reason

S ey — P S g

Atomic transactions on objects

const double in|]; //data to be histogrammed
const int f(double); //f(x) is the bin of x
int hI[]; //histogram, initially O
forall i in 0..n-1 do

{

int k = £(in[i]);
with hl[k] do {
h[k] ++;

}

e This abstraction also allows compiler support and
even permits implementation mechanisms other than
locks

S ey — P S g

Nested, multi-object transactions

node *m; //a node in an irregular adaptive mesh
/* (Vnode) (Vnode v) (ve (u->nbr)* < pe(v->nbr)*) */
with *m do { //remove *m from the mesh
for (n = m->nbr, n != NIL, n = n->nbr){
with *n do { //remove link from *n to *m
for (p = n->nbr, p != NIL, ... //etc

}
}
}

 In a naive implementation, deadlock could be
commonplace

* If a sequence deadlocks or fails, preservation of the
Invariant requires that it be “undone”, reversing its side
effects

I ey — P S g

Conclusions

* It's been a memorable and rewarding quarter-century

 The problems we now face are more serious than ever
- and we may even have forgotten a thing or two

* \We need to continue to meet the challenges

“There is no limit to what
we can accomplish
provided
you don’t care who gets the credit”

— George A. Michael

S ey — P S g

