

Evolution of Interconnects for Supercomputing

Moray McLaren *Quadrics Ltd*.

April 2003

© Quadrics Ltd.

A Finmeccanica Company

EtherNet and EtherNot!

Will standard interconnects solve all our problems?

- Whatever the volume interconnect of the future is, it will be called Ethernet.
- Incorporate ideas from specialised low latency interconnects into Ethernet?
 - RDMA is a start
 - Common DDI with high performance NICs?
 - Price advantage not so clear for equivalent BW.
- Successful EtherNot technologies need clear performance advantages that deliver in applications.

What's special about Supercomputing?

- You push the extremes of scale
 - Seamless switch scaling
 - Global operations
 - Fault tolerance
- You value your compute cycles
 - Compute communications ratio
 - Ultra low latency
 - Overhead

Historical scaling...

Elan – 1990

Elan 3 – 1998

Elan 4 – 2003

Put - 9µs MPI - 78µs 44Mbytes/s

April 2003

Put - 2µs MPI - 5µs 320Mbytes/s

© Quadrics Ltd.

Put - 2µs MPI - 3µs 900Mbytes/s

A Finmeccanica Company

Elan-3 MPI Latency Breakdown

April 2003

A Finmeccanica Company

MPI short message latency

MPI Bandwidth – Elan 4

© Quadrics Ltd.

Bye bye MPI?

- Problems with MPI
 - High overhead for very short messages
 - Tag matching overhead
 - MPI ordering rules imply single point of ordering for each node.
- remote read, remote write API
 - draw on libElan, ShMem
 - Support for many outstanding transactions
 - Target for compiler writers, and library developers

Low level hardware latency

Worst case latency 8-byte put (estimates)

Getting closer to the CPU...

- Where?
 - Hypertransport, proprietary IO port
- What's the win?
 - Avoid bus bridge latency
 - Lower cache refill overhead maybe?
 - Simpler interface
 - Smaller transfers for peak performance.
- Issues primarily commercial
 - Where's the connector?
 - Fragmentation of silicon volumes

The way forward on latency

Basic hardware latency

- Many factors reaching practical limits.
- Closer integration to CPU removes some delays
- Pipelining to support multiple outstanding short messages
- Real application latency
 - MPI well understood
 - Lower level API need for compilers etc.
 - What's the API for kernel messaging?
 - Reliably, ordered, datagram.
 - Several alternates, Portals, Via constructs..

Bandwidth going forward

- Limited by where you can connect to
 - Double and Quad clock PCI-X
 - PCI-Express
 - Direct connections.
- Large scale multi rail systems with large SMPs
 - NUMA challenges
 - Separate rails or one big switch?

OsNet (Elan 3) Multirail Performance

QsNet Multirail Performance

Switch scaling

Elite – 1990

Elite 4 – 2003

70Mhz 44Mbytes/s 256 nodes 400Mhz 325Mbytes/s ~2k nodes

© Quadrics Ltd.

1.3GHz 900Mbytes/s ~4K

April 2003

A Finmeccanica Company

Topology

- Fat trees have been very successful
 - Good structure for fault tolerance
 - Fairly uniform connectivity.
 - Good for global operations
 - Quite challenging to for systems integrations
- Packaging issues will dictate topology

Global operations

Why do they matter?

- Improve application scaling on very large systems
- Highly scalable single system image functions, (e.g. cluster membership)
- What works now
 - Range selected broadcast, barrier in the network
 - Integer collectives handled by IO processor in NIC

Future

- Floating point collectives (probably more appropriate in the NIC than in the switch)
- Alternative broadcast constructs.

Barrier Scaling (QsNet)

Data Courtesy of Lawrence Livermore National Lab

© Quadrics Ltd.

Fault tolerance and availability

- Typical current features for RAS
 - Use a topology with lots of alternate routes
 - Dual redundant PSU
 - Tolerant to single fan failure
 - Dual redundant control cards

Development for fault tolerance & reliability

- Pairwise broadcast for hardware mirroring.
- Rail failover in multirail systems
- Best way to improve interconnect reliability is minimise connectors

Physical packaging considerations

QsNet^{II} Physical Link

- 1.333Ghz design speed
 - 4b5b coding for DC balance
 - ~900 Mbytes/s after protocol
- Copper
 - 10 bit lvds total 40 wires
 - 10-12m range
- Optics
 - 12 bit parallel optical fiber
 - 100m

Future link technologies

- Still copper on the backplane for cost and reliability
 - Careful design gets to up to 5Gbit/s per wire for moderate runs. More with clever equalisation.
 - Max length decreases as speed increase
 - Improved packing technology to reduce connection lengths, pack more into the copper zone.
- Rack to rack all fibre
 - Future generations of parallel fibre
 - 12 x 5 Gbits/s ~= 6Gbytes/s

Optical switching ?

- Optical technology has been driven by telecomms requirements
 - Long haul not short haul
 - Circuit switched not packet switched
 - They're not buying anything!
- Combining logic, switching and buffering – easy for silicon
 - Silicon switches a distributed arbiter which delivers data as a side effect.

Optical switching?

- Optical crossbars or WDM based
- Advantages
 - Large crossbars possible
 - Very low latency for established connections.
 - Integration with optical fibre
 - But...
 - New component technologies
 - Optical switching generally have a separate control plane
 - Difficult to build self routing packet switches
 - Implies switch architecture with centralised control
- What sort of machines can we make with these?

