
Linux never has been and
never will be “Extreme”

Arthur B. (Barney) Maccabe
Computer Science Department

Center for High Performance Computing
The University of New Mexico

Salishan April 23, 2003

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

This talk was prepared on a Debain Linux box

http://www.debian.org

using OpenOffice

http://www.openoffice.org

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Outline

● My background: lightweight operating
systems

● Linux and world domination

● Adapting to innovative technologies

● What is Linux?

● OS Research

● Summary

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

SUNMOS: Sandia/UNM OS

● Lightweight, Compute Node OS
– Developed for 1024 node nCUBE 2
– Ran on Intel Paragon (1800+ nodes)

OSF-1/AD didn't scale until a few years later

● Intel Paragon
– SUNMOS 256KB

OSF-1/AD 10-12MB
16 MB memory / node

– 4KB to 4MB page:
25% application improvement
4 TLB entries

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Puma/Cougar

● Follow-on to SUNMOS

● Compute node OS for
Intel Tflops, ASCI/Red

– 4500+ compute nodes

● 2 333MHz Pentium II/node

● 256MB/node

– Applications show 60-70% scaling efficiency

● Is it the OS or the machine?

● Rogue OS effects (daemons, etc)

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

CPlant(tm)

● 1500+ 466MHz Alpha EV6
● Myrinet LANai-7 and LANai-9
● Red/Black switching
● Re-create systems software

from ASCI/Red
– High-performance message passing (Portals)
– Application launch
– System management tools

● Linux(tm) on service and compute nodes
“World's largest Linux cluster”

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

A Linux Mismatch

● Partition model
– Specialization in

hardware and software
● Linux responds to

application requests
– Resources do not initiate requests

(inetd is a bit of a kludge)
● Compute node OS is a slave to service

nodes
– Cplant copies image to RAM disk and exec
– Bproc uses process migration

Se
rv

ic
e

Compute

I/
O

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Linux on Cplant Compute Nodes

● Original plan:
– use Linux to start, build communication

layers
– port Cougar later

● Linux turned out to be OK
– Compute to communication imbalance
– Linux isn't horribly broken
– Open source is a good thing
– People want to talk about and work on Linux

● It's not all roses
– Lots of distractions (see above)

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Numbers

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Scaling & Related Issues

● ASCI/Red 60-70% scaling efficiency for
applications

– Machine or OS?

– How much do the apps contribute?

● Horror stories:

– Typical scaling efficiency is closer to 10%

– Barriers that take up to an hour!

– “Rogue OS effects”

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Comparing Linux and Cougar

● Port Linux to compute nodes of ASCI/Red
– started with 2.4.18, now using 2.4.20
– original version was to port Cougar to Cplant

● Direct comparison of Linux and Cougar
● Nighten

– ASCI/Red development system
– 144 nodes

● Nodes
– Dual 333 MHz Pentium II's
– 256 MB

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Arrrrrrgh!

2 4
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

CG

Linux
Cougar

Nodes

M
op

s/
se

c

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Whew!

2 4 8 16 32 64 128
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

CG

Linux
Cougar

Nodes

M
op

s/
se

c

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

More (good) Data

4 8 16 32 64 128
0

20

40

60

80

100

120

140

160

180

IS
Linux Cougar

Nodes

M
op

s/
se

c

2 4 8 16 32 64 128
0

500

1000

1500

2000

2500

3000

3500

4000

4500

MG
Linux Cougar

Nodes

M
op

s/
se

c

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Lies, lies, lies

● Bandwidth
– Cougar: >300 MB/s
– Linux: <35 MB/s

● Latency
– Cougar: 20 usec
– Linux: 90 usec

● MPI
– Cougar: MPI / Portals 2.0
– Linux: MPICH 1.2.5 / P4 / TCP / IP /

skbufs
Integrate Portals into Linux on ASCI/Red

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

World Domination

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Linux and World Domination

Time

Sy
st

em
 S

ca
le

largest system

largest reasonable
Linux system

Beowulf

Cplant
Pink/MCR

2.2 2.4 2.6

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Hardware Trends Help Linux

● Memory
– Paragon: 16 MB
– ASCI/Red: 256 MB
– Cplant: 1 GB

● TLB entries
– Paragon: 4
– ASCI/Red: 64
– Cplant: 128(?)

● Processor speeds
– Paragon: 50

MHz
– ASCI/Red: 333

MHz
– Cplant: 466

MHz
● Relative networking

– Paragon: 200
MB/s

– ASCI/Red: 400
MB/s
C l t 100

Management of node resources is not as critical

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Linux Helps Itself

● Easy to disable most daemons
– Eliminate “Rogue OS” effects

● Really bad things can be turned off
– malloc() uses mmap
– out of memory killer
– 1000 Interrupts/second on Alpha

● Good things being added
– hugetlb pages

● Horrible things get fixed
– Time goes backwards in 2.4.18 SMP mode

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

HPC Community Helps Linux

● System
environments
– Cplant(tm)
– Scyld(tm)
– Clustermatic(tm)
– OSCAR(tm)

● Hardware support
– Linux BIOS
– Supermon

● Vendors
– Drivers available

● Myricom, Quadrics,
SCI, etc.

– Major vendors
support Linux

● IBM, HP, Dell
– Specalized vendors

● Linux Networx, Pro
Micro, Atipa,
Racksaver,

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

The Obvious Conclusion

If you wait long enough, Linux will run well on
your system
– Hardware improves
– Linux improves
– The community works

If you wait long enough, your application
will run just fine on a sequential system

World Domination

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Cool Things with Linux

● Vertigo: Automatic Performance-Setting for
Linux
– Flauter (ARM) & Mudge (Michigan)

– OSDI, December 2002

● Transparent superpages for FreeBSD
– Navarro, Iyer, Druschel & Cox (Rice)

– OSDI, December 2002

– FreeBSD
Is the goal to show that Linux can
work, or to build a working system?

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Some Other Observations

● Barney's favorite wine:
“The Linux community doesn't care about

HPC”
● We haven't made a the case for any single feature
● The HPC community is hard to define:

Extreme Linux forum was not so extreme

● Linux direction is not focused on HPC
– Servers and desktops

● Linux on Red Storm?
– How much risk? How soon?

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Fundamental Conflict

● Working on Linux benefits more people

– Broader code base

– Well understood environment

● Specialized solutions work sooner

– More readily adaptable

– Designed specifically for the system

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Work on Linux

Work on
specialized
solutions

Obvious Response

Time

Sy
st

em
 S

ca
le

largest system

largest reasonable
Linux system

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Dealing with Innovation

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Innovative Technologies

Time

Sy
st

em
 S

ca
le

DARPA HPCS

largest reasonable
Linux system

largest system

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Barney's Favorite Architecture

Processing
Elements

NIC

Memory

Netwo
rk

When will it
run Linux?

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

What is Linux?

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Linux is an API

The Linux API – Resource abstraction and management

Applicati
on

Applicati
on

Applicati
on

Applicati
on

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Application

stdio

Linux is an Environment

The Linux API

sockets
library

Linux Device Drivers

MPICH

glibc
GM

library
and

drivers

BLAS
MPICH-GM

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

API: Syntax and Semantics

● Syntax: Operation signature
– name (index) of system call
– number and types of parameters
– Linux has ~250 system calls

● Semantics: Relative costs
– how much does fork cost?
– how long does read take?
– what does malloc really do?

Syntax is fairly easy, Semantics is hard

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

What else is there?

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

OS Research: History

● Synchronization is fundamentally hard
● File systems are neat
● Structure is the way to manage complexity
● You can do anything as long as it is Mach

– structure is important
● 100's of man-years of investment

– Middleware
– Extensible OSes
– OS Bypass

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

OS Design Approaches

● Monolithic

– Modular

– Lightweight

● Micro-kernels

● Extensible

● Exo-kernels

● OS Bypass

OS Kernel

Applicatio
n

Applicatio
n

ResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

ResourceResourceResourceResource

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Monolithic Approaches

● OS controls access to all resources
– Modular: for variety of resources
– Lightweight: limit resources and features

OS KernelOS Kernel
Modul
eModul

e

ResourceResourceResourceResourceResourceResource ResourceResource ResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n Applicatio

n

Applicatio
n

Applicatio
n

Applicatio
n

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Micro- & Exo- kernels

Micro-kernels
● OS routes messages

● Servers control
resources

OS Kernel

ServerServer

Remote server

ResourceResource

Applicatio
n

Applicatio
n

Exo-kernels
● User level OS

● Resources manage
themselves

● Applications run
independent OSes

Applicatio
n

Applicatio
n
Operating

System

Operating
System

ExoExo
ResourceResource

Applicatio
n

Applicatio
n
Operating

System

Operating
System

ExoExo
ResourceResource

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Extensible Kernels

● Run application code in the kernel
– Direct access to resources
– Avoid interrupt costs
– Avoid syscall overheads

OS KernelExtensi
on

ResourceResource ResourceResourceResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

OS Bypass & Splintering

OS Bypass
● Bypass the OS for

resources that are used
intensively

OS Kernel Use

Allocate

Allocate

ResourceResource

Applicatio
n

Applicatio
n

Splintering
● OS remains in charge

● Control goes through OS

● Data transfer is direct

SplinterSplinter

OS Kernel

ResourceResource

Data

Control

Control

Applicatio
n

Applicatio
n

SplinterSplinter

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Close to the end

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Why is OS work hard?

● Design?
That's the fun part

● Variety of applications?
We don't care about all that many applications

● Variety of hardware?
We don't really care about that much hardware:

processors, memory, timer/clock, network
cards, serial interfaces

● Buggy hardware?
This is a big problem

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Dealing with Buggy Hardware

ApplicationApplication● Start with Linux BIOS
(Thanks Ron
Minnich)

● Steal Linux drivers,
without modification,
whenever possible

● Write specialized
drivers where needed
– Communication
– Memory

Standard Compile/LibraryStandard Compile/Library

Linux BIOSLi
nu

x
dr

iv
er

Li
nu

x
dr

iv
er

Li
nu

x
dr

iv
er

Li
nu

x
dr

iv
er

Sp
ec

ia
l d

ri
ve

r

Sp
ec

ia
l d

ri
ve

r

Buggy HardwareBuggy Hardware

Roll your own OS

Linux Compatibility

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Summary

● Observation: Linux will always catch up (is
Windows far behind?)
– If you can afford to wait, you should
– If you're waiting, work on improving Linux

● My goal is to build systems that work now
– Strategy: use Linux and feedback into Linux

● OS structure research is important
– It's not that expensive
– Selecting a winner too early is destructive
– Don't over value what you have

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

6/7/8/9

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Operating Systems

● Multics: Imagine what we could do
● Unix: This is what we can do
● BSD: Wizards may play with the code
● Mach: We can do anything, with

nothing
● Windows: We can make lots of money
● MacOS: Isn't this pretty?
● Plan 9: We can do less now
● Linux: We don't need no money.

Here's the code, have fun!
B OS X d C i

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Strategy

● Reductionism (in theory)
– break a system into its parts and study the parts

in isolation
– the fun comes when you try to re-integrate all the

parts
● Reductionism (in systems)

– identify crucial features, build a simplified version
of the full system

– the fun comes when you try to add features

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

OS Concepts

● BIOS & High Level languages
– stand alone machines
– scheduling through reservations

● Multiprogramming
– hide latency for long I/O operations

● users are too stupid, lazy or unmotivated to figure out
nonblocking operations

– optimize processor utilization
● Timesharing

– humans are really slow
– optimize response time

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

What is “Extreme”?

● Resource constrained computing
● For my desktop, the resources are

applications and familiarity
● For my laptop it's battery life, screen size,

applications and familiarity
● We probably want to talk about physical

resources:
– processors
– memory
– communication

S
al

is
ha

n
A

pr
il

23
, 2

00
3

1

Extreme Systems

● OS defines resource access mechanisms
– required of all processes

● Frequently, mechanisms include policies
– consider malloc

● Cannot tolerate abuse of critical resource
● Bypass, if possible
● Hack if possible and necessary
● Design and implement mechanisms that

work

	Linux never has been and never will be “Extreme”
	Outline
	SUNMOS: Sandia/UNM OS
	Puma/Cougar
	CPlant(tm)
	A Linux Mismatch
	Linux on Cplant Compute Nodes
	Scaling & Related Issues
	Comparing Linux and Cougar
	Arrrrrrgh!
	Whew!
	More (good) Data
	Lies, lies, lies
	Linux and World Domination
	Hardware Trends Help Linux
	Linux Helps Itself
	HPC Community Helps Linux
	The Obvious Conclusion
	Cool Things with Linux	
	Some Other Observations
	Fundamental Conflict
	Obvious Response
	Innovative Technologies
	Barney's Favorite Architecture
	Linux is an API
	Linux is an Environment
	API: Syntax and Semantics
	OS Research: History
	OS Design Approaches
	Monolithic Approaches
	Micro- & Exo- kernels
	Extensible Kernels
	OS Bypass & Splintering
	Why is OS work hard?
	Dealing with Buggy Hardware
	Summary
	Operating Systems
	Strategy
	OS Concepts
	What is “Extreme”?
	Extreme Systems

