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This talk was prepared on a Debain Linux box

http://www.debian.org

using OpenOffice

http://www.openoffice.org 
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Outline

● My background: lightweight operating 
systems

● Linux and world domination

● Adapting to innovative technologies

● What is Linux?

● OS Research

● Summary
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SUNMOS:  Sandia/UNM OS

● Lightweight, Compute Node OS
– Developed for 1024 node nCUBE 2
– Ran on Intel Paragon (1800+ nodes)

OSF-1/AD didn't scale until a few years later

● Intel Paragon
– SUNMOS 256KB

OSF-1/AD 10-12MB
16 MB memory / node

– 4KB to 4MB page:  
25% application improvement
4 TLB entries
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Puma/Cougar

● Follow-on to SUNMOS

● Compute node OS for
Intel Tflops, ASCI/Red

– 4500+ compute nodes

● 2 333MHz Pentium II/node

● 256MB/node

– Applications show 60-70% scaling efficiency

● Is it the OS or the machine?

● Rogue OS effects (daemons, etc)
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CPlant(tm)

● 1500+ 466MHz Alpha EV6
● Myrinet LANai-7 and LANai-9
● Red/Black switching
● Re-create systems software

from ASCI/Red
– High-performance message passing (Portals)
– Application launch
– System management tools

● Linux(tm) on service and compute nodes
“World's largest Linux cluster”
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A Linux Mismatch

● Partition model
– Specialization in

hardware and software
● Linux responds to 

application requests
– Resources do not initiate requests

(inetd is a bit of a kludge)
● Compute node OS is a slave to service 

nodes
– Cplant copies image to RAM disk and exec
– Bproc uses process migration 

Se
rv

ic
e

Compute

I/
O
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Linux on Cplant Compute Nodes

● Original plan:
– use Linux to start, build communication 

layers
– port Cougar later

● Linux turned out to be OK
– Compute to communication imbalance
– Linux isn't horribly broken
– Open source is a good thing
– People want to talk about and work on Linux

● It's not all roses
– Lots of distractions (see above)
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Numbers
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Scaling & Related Issues

● ASCI/Red 60-70% scaling efficiency for 
applications

– Machine or OS?

– How much do the apps contribute?

● Horror stories:

– Typical scaling efficiency is closer to 10%

– Barriers that take up to an hour!

– “Rogue OS effects”
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Comparing Linux and Cougar

● Port Linux to compute nodes of ASCI/Red
– started with 2.4.18, now using 2.4.20
– original version was to port Cougar to Cplant

● Direct comparison of Linux and Cougar
● Nighten

– ASCI/Red development system
– 144 nodes

● Nodes
– Dual 333 MHz Pentium II's
– 256 MB
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Arrrrrrgh!
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Whew!
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More (good) Data
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Lies, lies, lies

● Bandwidth
– Cougar: >300 MB/s
– Linux: <35 MB/s

● Latency
– Cougar: 20 usec
– Linux: 90 usec

● MPI
– Cougar: MPI / Portals 2.0
– Linux: MPICH 1.2.5 / P4 / TCP / IP / 

skbufs
Integrate Portals into Linux on ASCI/Red
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World Domination
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Linux and World Domination

Time

Sy
st

em
 S

ca
le

largest system

largest reasonable
Linux system

Beowulf

Cplant
Pink/MCR

2.2 2.4 2.6
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Hardware Trends Help Linux

● Memory
– Paragon: 16 MB
– ASCI/Red: 256 MB 
– Cplant: 1 GB 

● TLB entries
– Paragon: 4
– ASCI/Red: 64
– Cplant: 128(?)

● Processor speeds
– Paragon: 50 

MHz 
– ASCI/Red: 333 

MHz
– Cplant: 466 

MHz
● Relative networking

– Paragon: 200 
MB/s

– ASCI/Red: 400 
MB/s
C l t 100

Management of node resources is not as critical
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Linux Helps Itself

● Easy to disable most daemons
– Eliminate “Rogue OS” effects

● Really bad things can be turned off
– malloc() uses mmap
– out of memory killer
– 1000 Interrupts/second on Alpha

● Good things being added
– hugetlb pages

● Horrible things get fixed
– Time goes backwards in 2.4.18 SMP mode
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HPC Community Helps Linux

● System 
environments
– Cplant(tm)
– Scyld(tm)
– Clustermatic(tm)
– OSCAR(tm)

● Hardware support
– Linux BIOS
– Supermon

● Vendors
– Drivers available

● Myricom, Quadrics, 
SCI, etc.

– Major vendors 
support Linux

● IBM, HP, Dell
– Specalized vendors

● Linux Networx, Pro 
Micro, Atipa, 
Racksaver, ....
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The Obvious Conclusion

If you wait long enough, Linux will run well on 
your system
– Hardware improves
– Linux improves
– The community works

If you wait long enough, your application 
will run just fine on a sequential system

World Domination
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Cool Things with Linux

● Vertigo: Automatic Performance-Setting for 
Linux
– Flauter (ARM) & Mudge (Michigan)

– OSDI, December 2002

● Transparent superpages for FreeBSD
– Navarro, Iyer, Druschel & Cox (Rice)

– OSDI, December 2002

– FreeBSD
Is the goal to show that Linux can 
work, or to build a working system?
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Some Other Observations

● Barney's favorite wine:
“The Linux community doesn't care about 

HPC”
● We haven't made a the case for any single feature
● The HPC community is hard to define:

Extreme Linux forum was not so extreme

● Linux direction is not focused on HPC
– Servers and desktops

● Linux on Red Storm?
– How much risk?  How soon?
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Fundamental Conflict

● Working on Linux benefits more people

– Broader code base

– Well understood environment

● Specialized solutions work sooner

– More readily adaptable

– Designed specifically for the system
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Work on Linux

Work on 
specialized
solutions

Obvious Response

Time

Sy
st

em
 S

ca
le

largest system

largest reasonable
Linux system
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Dealing with Innovation
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Innovative Technologies

Time

Sy
st

em
 S

ca
le

DARPA HPCS

largest reasonable
Linux system

largest system
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Barney's Favorite Architecture

Processing
Elements

NIC

Memory

Netwo
rk

When will it 
run Linux?
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What is Linux?
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Linux is an API

The Linux API – Resource abstraction and management

Applicati
on

Applicati
on

Applicati
on

Applicati
on
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Application

stdio

Linux is an Environment

The Linux API

sockets
library

Linux Device Drivers

MPICH

glibc             
GM

library
and

drivers

BLAS
MPICH-GM
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API: Syntax and Semantics

● Syntax:  Operation signature
– name (index) of system call
– number and types of parameters
– Linux has ~250 system calls

● Semantics:  Relative costs
– how much does fork cost?
– how long does read take?
– what does malloc really do?

Syntax is fairly easy, Semantics is hard
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What else is there?
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OS Research: History

● Synchronization is fundamentally hard
● File systems are neat
● Structure is the way to manage complexity
● You can do anything as long as it is Mach

– structure is important
● 100's of man-years of investment

– Middleware
– Extensible OSes
– OS Bypass
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OS Design Approaches

● Monolithic

– Modular

– Lightweight

● Micro-kernels

● Extensible

● Exo-kernels

● OS Bypass

OS Kernel

Applicatio
n

Applicatio
n

ResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

ResourceResourceResourceResource



S
al

is
ha

n 
A

pr
il 

23
, 2

00
3

1

Monolithic Approaches

● OS controls access to all resources 
– Modular:  for variety of resources
– Lightweight: limit resources and features 

OS KernelOS Kernel
Modul
eModul

e

ResourceResourceResourceResourceResourceResource ResourceResource ResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n Applicatio

n

Applicatio
n

Applicatio
n

Applicatio
n
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Micro- & Exo- kernels

Micro-kernels
● OS routes messages

● Servers control 
resources

OS Kernel

ServerServer

Remote server

ResourceResource

Applicatio
n

Applicatio
n

Exo-kernels
● User level OS

● Resources manage 
themselves

● Applications run 
independent OSes

Applicatio
n

Applicatio
n
Operating

System

Operating
System

ExoExo
ResourceResource

Applicatio
n

Applicatio
n
Operating

System

Operating
System

ExoExo
ResourceResource
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Extensible Kernels

● Run application code in the kernel 
– Direct access to resources
– Avoid interrupt costs
– Avoid syscall overheads

OS KernelExtensi
on

ResourceResource ResourceResourceResourceResource

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n

Applicatio
n
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OS Bypass & Splintering

OS Bypass
● Bypass the OS for 

resources that are used 
intensively

OS Kernel Use

Allocate

Allocate

ResourceResource

Applicatio
n

Applicatio
n

Splintering
● OS remains in charge

● Control goes through OS

● Data transfer is direct

SplinterSplinter

OS Kernel

ResourceResource

Data

Control

Control

Applicatio
n

Applicatio
n

SplinterSplinter
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Close to the end
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Why is OS work hard?

● Design?
That's the fun part

● Variety of applications?
We don't care about all that many applications

● Variety of hardware?
We don't really care about that much hardware: 

processors, memory, timer/clock, network 
cards, serial interfaces

● Buggy hardware?
This is a big problem
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Dealing with Buggy Hardware

ApplicationApplication● Start with Linux BIOS 
(Thanks Ron 
Minnich)

● Steal Linux drivers, 
without modification, 
whenever possible

● Write specialized 
drivers where needed
– Communication
– Memory

Standard Compile/LibraryStandard Compile/Library

Linux BIOSLi
nu

x 
dr

iv
er

Li
nu

x 
dr

iv
er

Li
nu

x 
dr

iv
er

Li
nu

x 
dr

iv
er

Sp
ec

ia
l d

ri
ve

r

Sp
ec

ia
l d

ri
ve

r

Buggy HardwareBuggy Hardware

Roll your own OS

Linux Compatibility
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Summary

● Observation: Linux will always catch up (is 
Windows far behind?)
– If you can afford to wait, you should
– If you're waiting, work on improving Linux

● My goal is to build systems that work now
– Strategy: use Linux and feedback into Linux

● OS structure research is important
– It's not that expensive
– Selecting a winner too early is destructive
– Don't over value what you have
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6/7/8/9
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Operating Systems

● Multics: Imagine what we could do
● Unix: This is what we can do
● BSD: Wizards may play with the code
● Mach: We can do anything, with 

nothing
● Windows: We can make lots of money
● MacOS: Isn't this pretty?
● Plan 9: We can do less now
● Linux: We don't need no money. 

Here's the code, have fun!
B OS X d C i
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Strategy

● Reductionism (in theory)
– break a system into its parts and study the parts 

in isolation
– the fun comes when you try to re-integrate all the 

parts
● Reductionism (in systems)

– identify crucial features, build a simplified version 
of the full system

– the fun comes when you try to add features
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OS Concepts

● BIOS & High Level languages
– stand alone machines
– scheduling through reservations

● Multiprogramming
– hide latency for long I/O operations

● users are too stupid, lazy or unmotivated to figure out 
nonblocking operations

– optimize processor utilization
● Timesharing

– humans are really slow
– optimize response time
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What is “Extreme”?

● Resource constrained computing
● For my desktop, the resources are 

applications and familiarity
● For my laptop it's battery life, screen size, 

applications and familiarity
● We probably want to talk about physical 

resources:
– processors
– memory
– communication
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Extreme Systems

● OS defines resource access mechanisms
– required of all processes

● Frequently, mechanisms include policies
– consider malloc

● Cannot tolerate abuse of critical resource
● Bypass, if possible
● Hack if possible and necessary
● Design and implement mechanisms that 

work
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