

The Earth Simulator vs.

Ten rounds or a Knock-Out?

Darren J. Kerbyson

Adolfy Hoisie, Harvey J. Wasserman

Performance and Architectures Laboratory (PAL)
Los Alamos National Laboratory

April 2003

Ideas That Change the World

"26.58Tflops on AFES ... 64.9% of peak (640nodes)"

"14.9Tflops on Impact-3D 45% of peak (512nodes)"

"10.5Tflops on PFES ... 44% of peak (376nodes)"

40Tflops

20Tflops

Talk Overview

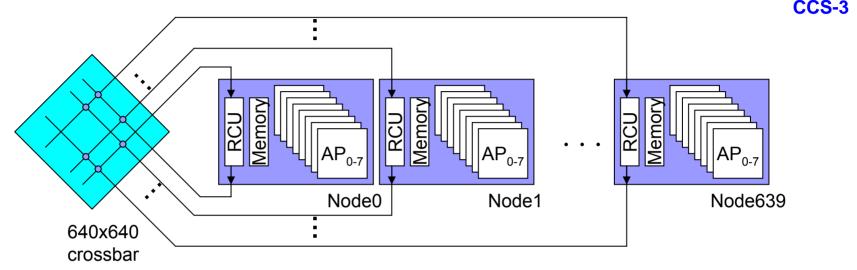
Overview of the Earth Simulator

- A (quick) view of the architecture of the Earth Simulator (and Q)
- A look at its performance characteristics

Application Centric Performance Models

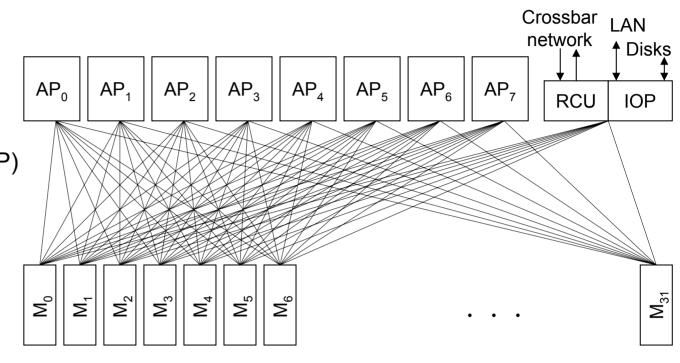
- Method of comparing performance is to use trusted models of applications that we are interested in, e.g. SAGE and Sweep3D.
- Analytical / Parameterized in system & application characteristics

Models can be used to provide:


- Predicted performance prior to availability (hardware or software)
- Insight into performance
- Performance Comparison (which is better?)
- System Performance Comparison (Earth Simulator vs ASCI Q)

Earth Simulator: Overview

- 640 Nodes (Vector Processors)
- interconnected by a single stage cross-bar
 - Copper interconnect (~3,000Km wire)
- NEC markets a product SX-6
 - Not the same as an Earth Simulator Node similar but different memory sub-system

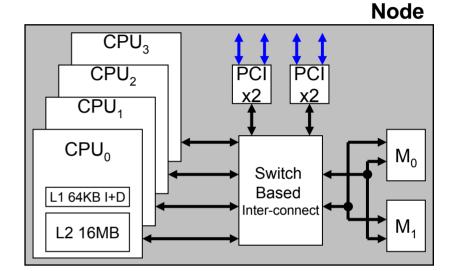


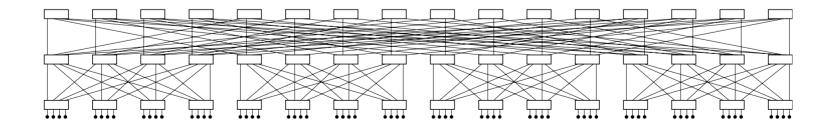
Earth Simulator Node

Node contains:

8 vector processors (AP)
16GByte memory
Remote Control Unit
(RCU)
I/O Processor (IOP)

Each AP has:


- A vector unit (8 sets of 6 different vector pipelines), and a super-scalar unit
- 5,000 pins
- AP operates mostly at 500MHz:
- Processor Peak Performance = 500×8 (pipes) x 2 (float-point) = 8,000 Mflop/s
- Memory bandwidth = 32 GB/s per Processor (256GB/s per node)



CCS-3

- 2048 Nodes
- Fat-tree network (Quadrics)
- Each node is an HP ES45
 - 4 x Alpha EV68 micro-processors
 - 1.25GHz
 - Memory Hierarchy:
 - » 64KB I+D I 1
 - » 16MB L2 cache
 - » 16 GB memory per node (typical)

	Earth Simulator (based on NEC SX-6)	ASCI Q (HP ES45)	
Node Architecture	Vector SMP	Microprocessor SMP	
System Topology	Crossbar (single- stage)	Fat-tree	
Number of nodes	640	2048	
Processors - per node - system total	8 5120	4 8192	
Processor Speed	500 MHz	1.25 GHz	
Peak speed - per processor - per node	8 Gflops 64 Gflops	2.5 Gflops 10 Gflops	
Memory - per node - per processor	16 GB 2 GB	16 GB (max 32 GB) 4 GB (max 8 GB)	
Memory Bandwidth (peak) - L1 Cache - L2 Cache - Main memory (per PE)	N/A N/A 32 GB/s	20 GB/s 13 GB/s 2 GB/s	
Inter-node MPI communication - Latency	8.6 µsec	5 µsec	

11.8 GB/s

- Bandwidth

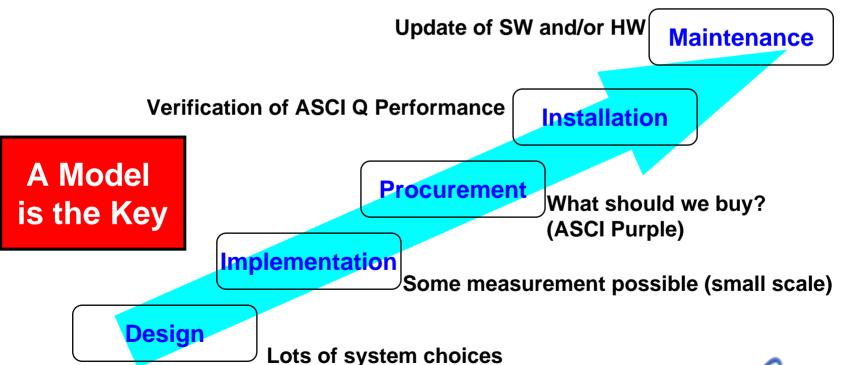


300 MB/s

A quotation from a scientific explorer?

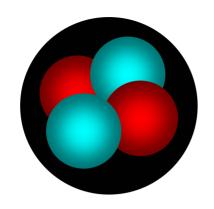
"Its life Jim, but not as we know it"

"Its performance Jim, but not as we expected it"



Need to have an expectation

- Complex machines and software
 - single processors, interactions within nodes, interaction between nodes (communication networks), I/O
- Large cost for development, deployment and maintenance
- Need to know in advance what performance will be.



?

(How many Alphas are equivalent to the Earth Simulator?)

Answer:

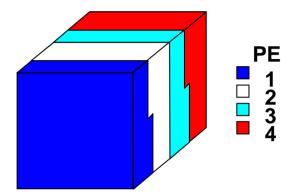
Earth Simulator =
$$640 \times 8 \times 8 = 40$$
-Tflops

Nodes PEs/node Gflops/PE

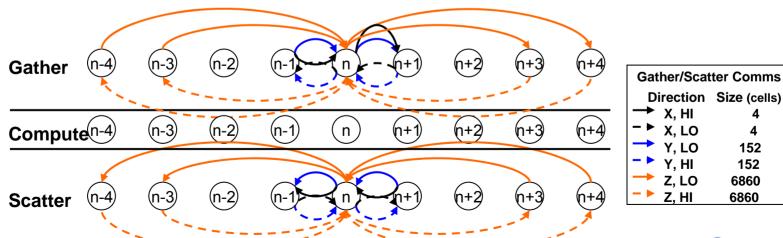
Alpha ES45 System =
$$\frac{1}{2}$$
 x 4 x 2.5 = 40-Tflops

$$->$$
 2 = 4,096 nodes

Another Answer: <u>It depends on what are going to run</u>



Performance Model for SAGE


Identify and understand the key characteristics of code

- Main Data structure decomposition: Slab
 - communications scale as number of PEs (^2/3)
 - communication distance (PEs) increases
 - Effect of network topology

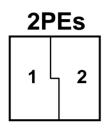
Processing Stages

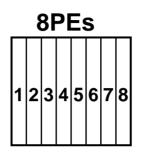
Gather data, Computation, Scatter Data

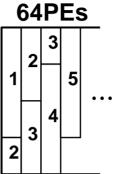
152

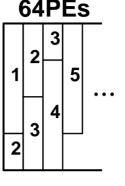
152 6860

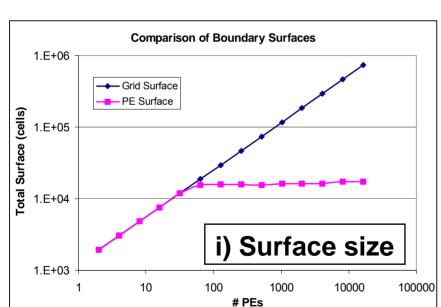
6860

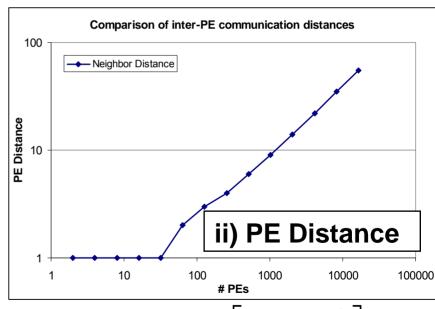

PAL Scaling Characteristics




256PEs


5

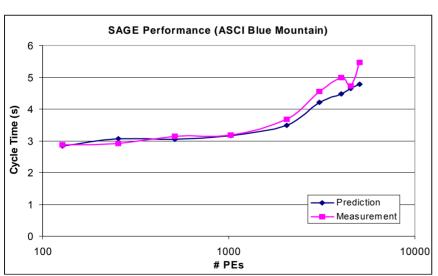

6 3

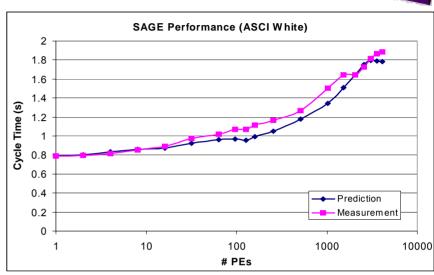


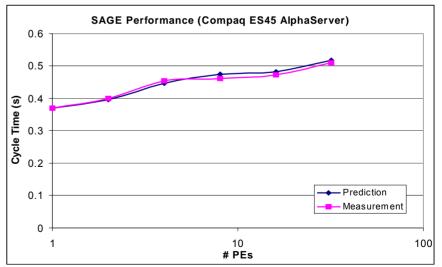
Surface split across PEs: $P > \sqrt{(E/8)}$

PE distance

(for cells/PE = 13,500P > 41)



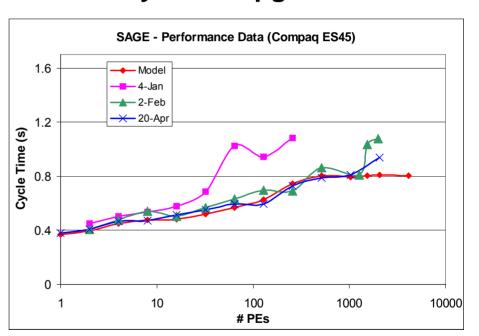



Validated on large-scale platforms:

- ASCI Blue Mountain (SGI Origin 2000)
- CRAY T3E
- ASCI Red (intel)
- ASCI White (IBM SP3)
- Compaq Alphaserver SMP clusters

Model is highly accurate (< 10% error)

Experience: Compaq Installation

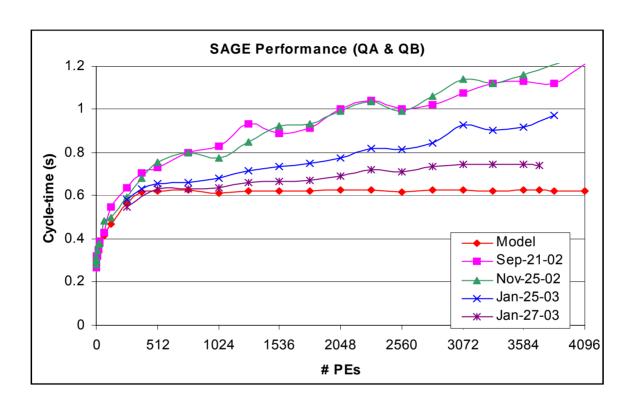


- Model provided expected performance
- Installation performed in stages

Late 2001:

Early 2002: upgraded PCI

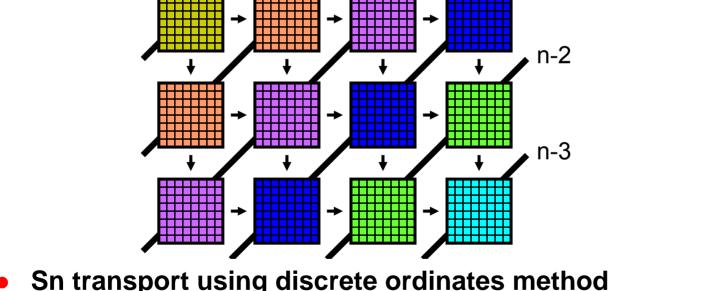
-> Model used to validate measurements!


Other factors: accurately predicted when 2-rails improves the performance (P>41)

Los Alamos

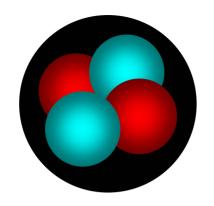
More recently: (Jan 2003)

- Performance of QA and QB is now with ~10% of our expectation
- Without a model we would not have identified (and solved) the poor performance!



SWEEP3D Particle Transport: 2-D Pipeline Parallelism

n+3 n+2



- Sn transport using discrete ordinates method
- wavefronts of computation propagate across grid
- Model for Sweep3D accurately captures the performance

How many

7

Basis for Performance Comparison

- Use validated performance models (trusted) to predict performance
- Large problem size (Weak scaling) to fill available memory
 - -> Problem size on Q is double that on the Earth Simulator

Compare processing rate:

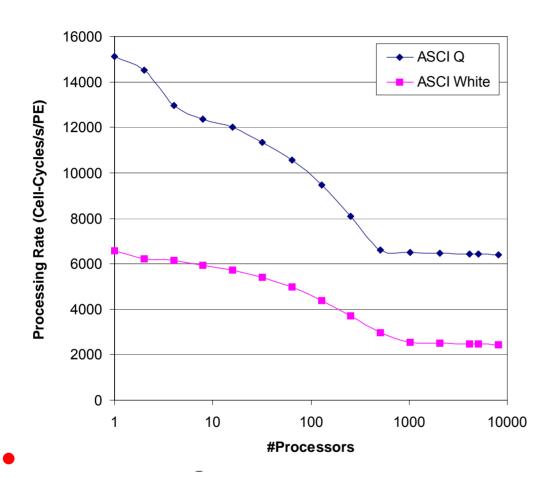
- Equal processor count basis (1 to 5120)
- % of system used (10 to 100%)

But have an unknown:

- performance of codes on single Earth Simulator processor
- -> Consider range of values

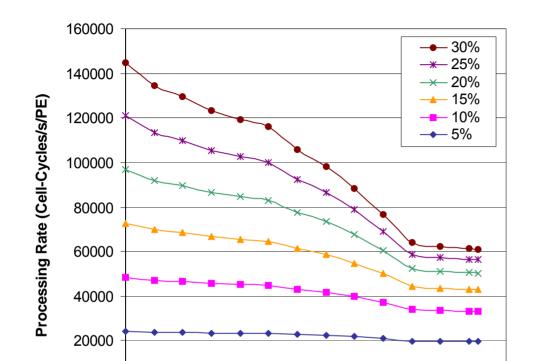
Model Parameters: SAGE

CCS-3


Parameter	r	Alpha ES45	Earth Simulator	
P _{SMP}	Processors per node	4	8	
CL	Communication Links per Node	1	1	
E	Number of level 0 cells	35,000	17,500	
f _{GS_r} f _{GS_I}	Frequency of real and integer gather-scatters per cycle	377 22	377 22	
T _{comp} (E)	Sequential Computation time per cell	68.6 <i>µ</i> s	\begin{aligned} \{42.9 \mu s & (\%5 \ of \ peak) \\ 21.4 \mu s & (\%10 \ of \ peak) \\ 14.3 \mu s & (\%15 \ of \ peak) \\ 10.7 \mu s & (\%20 \ of \ peak) \\ 8.6 \mu s & (\%25 \ of \ peak) \\ 7.1 \mu s & (\%30 \ of \ peak) \end{aligned}	
L _c (S,P)	Bi-directional MPI communication Latency	$\begin{cases} 6.10\mu s & S < 64 \\ 6.44\mu s & 64 \le S \le 5 \\ 13.8\mu s & S > 512 \end{cases}$	8 μs	
$B_c(S,P)$	Bi-directional MPI communication Bandwidth (per direction)	$\begin{cases} 0.0 & S < 64 \\ 78MB/s & 64 \le S \le 5 \\ 120MB/s & S > 512 \end{cases}$	10 <i>GB</i> /s	

SAGE: Processing Rate

Higher is better


- ASCI Q between 2.2 and 2.8 times faster than White
- Data from Model (validated to 4096 PEs on Q, 8192 PEs on White)

SAGE: Processing Rate

100

#Processors

10

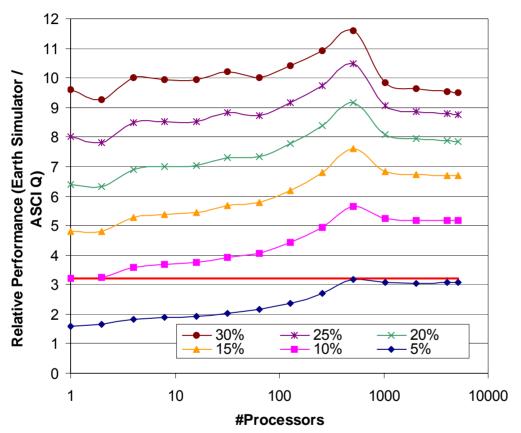
Earth Simulator

Higher is better

Single Processor time is unknown – modeled using range of values

1000

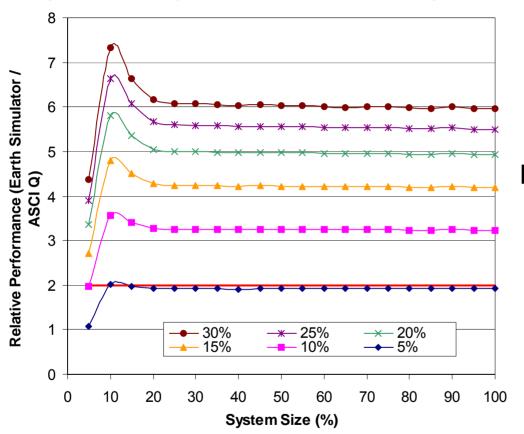
10000



SAGE: Earth Simulator vs Q

(Equal processor count)

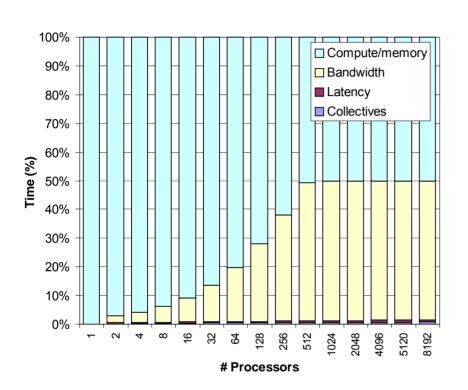
Higher = Earth Simulator Faster

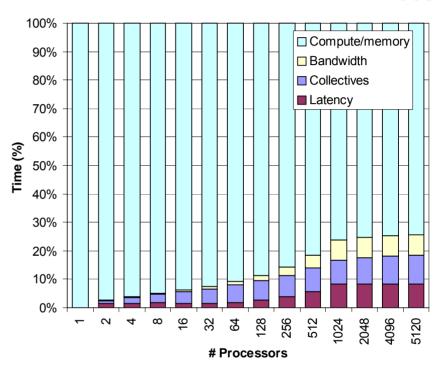

- Ratio of processor peak-performance is 3.2 (red line)
- In nearly all cases: Earth Simulator performance is better than ratio of processor peak-performance

SAGE: Earth Simulator vs Q

(% of system utilized)

Higher = Earth Simulator Faster

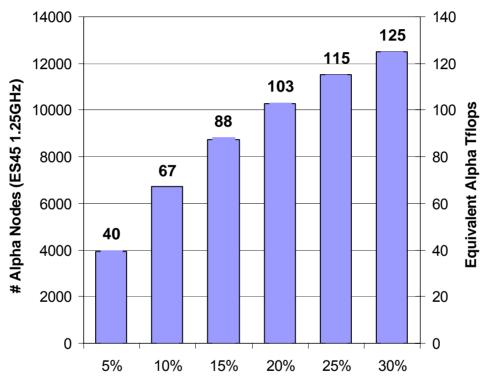

- Ratio of system peak-performance is 2 (red line)
- In nearly all cases: Earth Simulator better than ratio of system peak-performance



SAGE: Component Time Predictions

CCS-3

- 10% case considered on Earth Simulator
- Higher bandwidth component on Alpha
- Latency cost on Earth Simulator is more visible
 - reduced computation (x3.2), increased bandwidth (x40), latency ~same

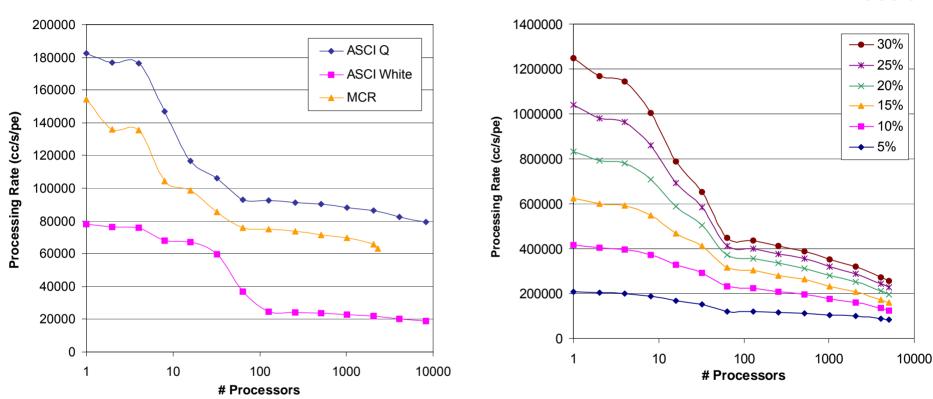


How many Alpha nodes ≡ Earth Simulator for SAGE?

CCS-3

% of single-processor peak achieved on Earth Simulator

- 1 ES45 1.25GHz = 10GFlops, or 1,000 nodes = 10Tflops
- If assume a 10% of peak on ES -> need 67Tflops of current Alphas

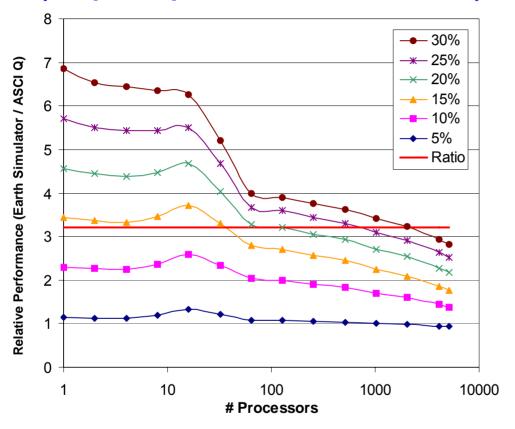


Sweep3D: Processing Rate

CCS-3

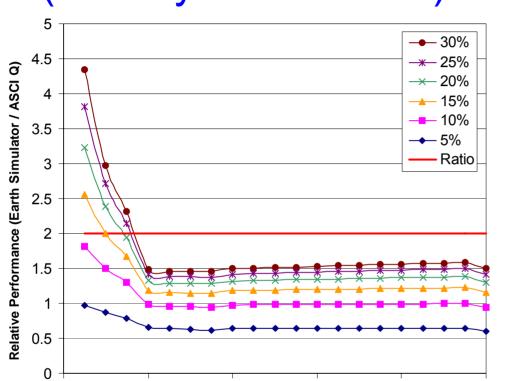
Higher is better

Again, range of values for Earth Simulator unknown single processor time



Sweep3D: Earth Simulator vs Q

(Equal processor count)


Higher = Earth Simulator Faster

- Ratio of processor peak-performance is 3.2 (red line)
- At large PE counts: Earth Simulator performance is worse than ratio of processor peak-performance

Sweep3D: Earth Simulator vs Q

(% of system utilized)

20

0

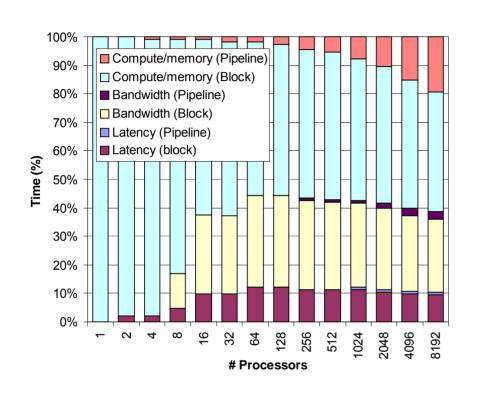
Higher = Earth Simulator Faster

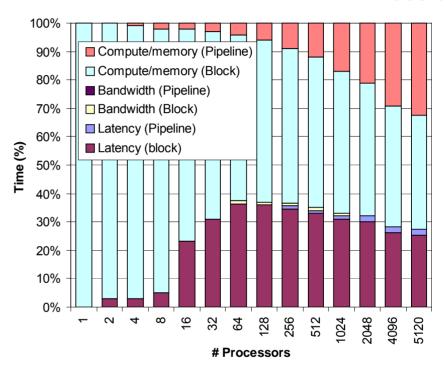
Ratio of system peak-performance is 2 (red line)

System Size (%)

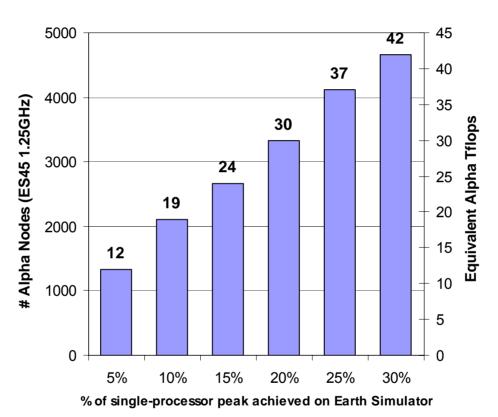
60

Using more than 15% of system: Earth Simulator performance is worse than ratio of system peak-performance


80


100

Sweep3D: Component Time Predictions


- 5% case considered for the Earth Simulator
- Higher Latency component than SAGE on both systems
 - Significant
- Pipeline effect can be seen on higher PE counts

How many Alpha nodes ≡ Earth Simulator for Sweep3D?

- 1 ES45 1.25GHz = 10GFlops, or 1,000 nodes = 10Tflops
- If assume a 5% of peak on ES -> need 12Tflops of current Alphas

Hypothetical Workload: Assume 40% SAGE and 60% Sweep

		SAGE % of single-processor peak						
		5%	10%	15%	20%	25%	30%	
S w e e p 3 D	5%	23	34	42	48	53	57	
	10%	27	38	46	52	57	61	
	15%	30	41	49	55	60	64	
	20%	33	44	52	58	62	67	
	25%	35	46	54	60	65	69	
	30%	38	48	57	63	68	72	

- Numbers in table indicate a peak Tflop rated Alpha ES46 system that would achieve the same performance as the Earth Simulator
- Currently: SAGE on NEC SX-6 achieved 5% on first run (Sweep3D expected to be less). This may improve over time.

ALI Summary

- Models have provided quantitative information on the longdebated efficiency of large, microprocessor-based systems for HPC (instead of smaller, more-powerful but special-purpose vector systems)
- Comparison of the Earth Simulator and ASCI Q performance is heavily dependent on the workload
 - At present, an Alpha system of approx. 23Tflops peak would achieve the same level of performance as the Earth Simulator on the workload considered here (60% Sweep3D, and 40% SAGE).
- Results gives a 'reference' comparison
 - The achievable performance on the NEC SX-6 (or Earth Simulator node) may change over time. This analysis will stay valid for the systems as they presently are.
- Models have also been used for:
 - Design studies (architecture and software, e.g IBM PERCS HPCS)
 - During ASCI Q installation (to validate observed performance)
 - In the procurement of ASCI Purple
 - Performance comparison of systems

www.c3.lanl.gov/par_arch |