Searching String Collections for
the Most Relevant Documents

Wing-Kai Hon (NTHU, Taiwan)
Rahul Shah (LSU)
Jeff Vitter (Texas A&M Univ.)

Outline

Background on compressed data structures
Our framework

Achieving optimal results

Construction algorithms

Succinct solutions

Conclusions

The Attack of Massive Data

e Lots of massive data sets being generated

— Web publishing, bioinformatics, XML, e-mail, satellite geographical data
— |P address information, UPCs, credit cards, ISBN numbers, large inverted files

 Data sets need to be compressed (and are compressible)

— Mobile devices have limited storage available
— 1/O overhead is reduced
— There is never enough memory!

 Goal: design data structures to manage massive data sets
— Near-minimum amount of space
 Measure space in data-aware way, i.e. in terms of each individual data set
— Near-optimal query times for powerful queries
— Efficient in external memory

Parallel Disk Model (vitter, shriver 90, 94]

80 GB — 100 TB and more!

Block I/0 C
8 — 500 KB Internal
Memory

l

\eruy/

1-4GB

N = problem size
M = internal memory size
B = disk block size
D = #independent disks

Scan: O(N/DB)
Sorting: O((N/DB) logg(N/M))
Search: Oflogy; N)

See book [Vitter 08] for overview

Indexing all the books in a library

= 10-floor library
@ = catalogue of books

= each title and some keywords

negligible additional space
a small card (few bytes) per book
one bookshelf to store the cards

limited search operations!

Word-level indexing (ala Google)
(search for a word using inverted index)

00000000000 OOOO 000000

'] | R] |

—

. Split the text into words.

. Collect all distinct words In a dictionary.

. For each word w, store the
iInverted list of its locations
In the text: iy, 1,, -+

W N

Word-level indexing

Simple implementation: one pointer per location

Avg. word size, pointer size
index space = ¥atext size

v"Much better implementation:

compress the inverted lists by

encoding the gaps between

adjacent entries (e.g., yand o

codes WMB99]))

v’ Index space is 10%-15% h

1% floor + 10 floors

Full-text indexing
(searching for a general pattern P)

 Not handled efficiently by Google
* No clear notion of word is always available:

e Some Eastern languages
e unknown structure (e.g., DNA sequences)

e Alphabet 2, text T of size n bytes (i.e., n log | 2| bits) :
each text position is the start of a potential occurrence of P

¢« 00000000000000000000000000000000 ---
rrrrrrrrrrrrrrrerrerrerrerrrrrnd

Naive approach: blow-up with O(n?) words of space
Can we do better with O(n) words (i.e., O(n log n) bits)?
Or even better with linear space O(n log |Z|) bits?
Or best yet with compressed space n H, (1 + o(1)) bits?

Suffix tree / Patricia trie, [Z[=2 fioors

10
floors

e Compact trie storing the suffixes of
input string bababa# (assuminga<#<b)

e Space is O(n log n) bits >> text size of n bits
* |n practice, space is roughly 16n bytes [MM93]

Suffix array

e Sorted list of suffixes (assuming a < b < #) 40-50
: floors
e Better space occupancy: n log n bits,
4n bytes in practice
e Additional n bytes for the lcps [MM93]
Inmat tert Z:ababat#
nput text. d:-ahad
bababa # 6:aft 10
a. oo l:pbababat# floors
Suffix array:
_ J:babat#
246135 7 E b o
T:#

Can find pattern P by binary search.
(Actually there are better ways.)

Space reduction

The importance of space saving (money saving):

— Portable computing with limited memory

— Search engines use DRAM in place of hard disks

— Next generation cellular phones will cost # bits transmitted

Sparse suffix tree [KU96] and other data structures based
on suffix trees, arrays, and automata [K95,CV97,...]

Practical implementations of suffix trees reduce space but
still 10n bytes [K99] or 2.5n bytes [M0O1] on average

COmpressed Suffix Array (Grossi, Gupta, Vitter 03)

50-60 40-50

New indexes
(such as our CSA)
require 20%-40%
of the text size

11 1%
10 floors

floors
2-4
floors
fl

text new in_verted suffix
index array

[

¥ O(|P| + polylog(n)) search time
(in RAM model).

% Size of index equals size of text

In entropy-compressed form
(with multiplicative constant 1)!

* Self-indexing text:
no need to keep the text!

% Any portion of the text can be
decoded from the index.

% Decoding is fast and does not
require scanning the whole text.

% Can cut search time further by
log n factor (word size).

* First external memory version in
SPIRE 20009.

Fundamental Problems in Text Search

e Pattern Matching: Given a text T and pattern P
drawn from alphabet 2, find all locations of Pin T.

— data structures: Suffix Trees and Suffix arrays
— Better: Compressed Suffix Arrays [GGV03], FM-Index [FMO5]

e Document Listing:
Given a collection of text strings (documents) d,,d,,...d;
of total length n, search for query pattern P (of length p).

— Output the ndoc documents which contain pattern P.

— lIssue: Total number ndoc of documents output might be much smaller than
total number of pattern occurrences, so going though all occurrences is
inefficient.

— Muthukrishnan: O(n) words of space, answers queries in optimal O(p + ndoc).

Modified Problem—using Relevance

e |nstead of listing all documents (strings) in which
pattern occurs, list only highly "relevant” documents.

— Frequency: where pattern P occurs most frequently.

— Proximity: where two occurrences of P are close to each
other.

— Importance: where each document has a static weight
(e.g., Google’s PageRank).
e Threshold vs. Top-k
— Thresholding: K-mine and K-repeats problem (Muthu).

— Top-k: Retrieve only the k most-relevant documents.
* Intuitive for User

Approaches

e Inverted Indexes
— Popular in IR community.
— Need to know patterns in advance (words).
— In strings the word boundaries are not well defined.

— Inverted indexes for all possible substrings can take a lot
more space.

— Else they may not be able to answer arbitrary pattern
qgueries (provably efficiently).

e Muthukrishnan’s Structures (based on suffix trees)

— Take O(n log n) words of space for K-mine and K-repeats
problem (thresholding) while answering queries
in O(P + ndoc) time.

— Top-k queries require additional overhead.

Suffix tree-based solutions

e Document Retrieval Problem
— Store all suffixes of the D documents.

— Each leaf in suffix tree contains
e Documentid
e D: Leaf-rank of previous leaf of the same document

— Traverse the suffix tree and get the range [L,R] such that
all the occurrences of the pattern correspond to
the leaves from leaf-rank L to R.

— To obtain each document uniquely, output only those leaves with D-
values <L (i.e., the smallest leaf rank for the document).

e 3-sided query in 2 dimensions -- (2,1)-range query.
e Can be done using repeated application of RMQs.
— O(P+ ndoc) time... see figure.

e K-mine and K-repeats
— Fixed K, separate structure for each K value : O(n log n) words space.

Suffix tree based solutions

d1l: banana
d2: urban Suffixes:
($<a<h) a$
an$
d2 ana$
anana$
d2 ban$
banana$
n$
na$
nana$
rban$
urban$

e Search pattern: “an”

 We look at the node’s subtree:
d1 appears twice and d2 appears once in this subtree

Preliminary : RMQs for top-k on array
e Range Maximum Query: Given an array A and query (i,j),
report the maximum of Ali..j]
— Linear space, linear preprocessing time DS with O(1) query
time
e Range threshold: Given an array A, and a query (i,j,T),
report all the numbers in A[i..j] which are >=1
— Can be done using repeated RMQs in O(output) time
e Range top-k: Given an array A, and a query (i,j,k) report
top-k highest numbers in Ali..j]
— Repeated RMQs + heap = O(k log k) time
* Generalization: Given array A, and query specifies set of
t ranges [iy,j,], liyj5] - lighi
— Threshold : O(t +output), top-k : O(t + k log k)

Our first framework

O(n) words of space.

For a given query pattern P of length p, each document d
gets a score(P, d) based upon the occurrences of P in d.
Arbitrary score function allowed.

— Examples: frequency, proximity, importance are all captured in
this framework.

Answers the thresholding version in optimal time
O(p+ ndoc), improving the space bound of Muthukrishnan.

Answers top-k version (in sorted order) in
O(p + k log k) time.
e Does not need to look at ndoc documents!

N-structure: Augmented Suffix Tree

(2,0)

d1:3,d3:5,d4:3,d5:4

d4:2
(3,1)

(12,1)

d2:2,d3:

AU AN

d5 d3 d3 d4
dl gp di d3 dg d> d2d3 d3 41 d5 d4 d6

* N-structure N: At a node v, store an entry for document d, if at least two
children of v have d. in their subtrees.

e The score of d, at node v is the number of occurrences of d. in the subtree.
e Link every entry for document d, to the entry of d. in a closest ancestor node.
e Each link is annotated with preorder numbering of (origin, target).

(2 1 1) -range query Query pattern P

corresponds to the
subtree of node v;
threshold K= 2

d1:3,d3:5,d4:3,d5:4
Subtree(v) =
preorder range [2,18]

1,
@ d4:2 For threshold K = 2,
@ d1,d2,d3,d5 ... Yes

d2:2, d3 d4,d6 ... No

5:2
1 (18 12)
(5// 13, 2) \ 462
d5 d3 d3 d4 43 \d5

dl gp di d3 dg d> d2 d3 41 d5 d4 dé

e |If the query matches up to node v in the suffix tree, then we need to focus
on all the links with origin in Subtree(v) and target above Subtree(v).

— This ensures each document is considered only once.

e Among these links we need the links whose origin score value is greater than
threshold K (or that have the k highest scores at their origins).

— (2,1,1)-range query in 3-D

UO

Too costly

e (2,1,1)-range query, K=2
— Get all links, starting in v’s subtree preorder range [2,18],
with target value < 2 and origin score value > K = 2.

— Best linear space structure takes O(ndoc x log n) time to
answer such a query—which means a total of
O(p + ndoc x logn) time.

— QOur target is O(p + ndoc) time.

e |[dea: Number of possible target values is bounded
by # ancestors of v, which is < p.

Range of v =[2,18]

I 'St r u Ct u re For thresold K=2,

d1,d3,d5 are reported

at root |, and
1 di: 3 d3 5,d4: 3, d5:4 d2 gets reported at

dummy node |,
(3,1) (2,1 d4: 28
\(31 ,1) d5:2

WA

dl d2 g1 g3 gs4 d5 d2 d3 B B B g3 g 40 g d6

e At each node, make an I-structure array based upon incoming
links (origin, doc id, score) sorted by preorder rank of origin:

— Atnode1:
(2.3,2).(3,1,2),(11,4,1),(12,5,2),(19,4,2),(20,3,3),(28,5,2),(31,1,1)

— At node 2: (6,2,1),(10,3,1),(16,2,1),(17,3,1)

|-structure

Thus the problem is reduced to 3-sided queries in 2D
in at most p I-structures.

— They can be done using repeated application of RMQs
in O(p + ndoc) time, but ...

For top-k version, we use heap and apply simultaneous
RMQs in all I-structures and answer in O(p + k log k) time.

For RMQs to work, we must first calculate the starting
and ending array indices of the range of Subtree(v) in
each |-structure.

— This requires a predecessor query unless done smartly.

— This would have meant O(p loglog n + ndoc) bound.
We keep two extra fields 6,6, for each link so that each of

these ranges’ starting and ending indices can be obtained
In a constant time.

Avoiding predecessor query

For each link (x,y), the &; field records the preorder ranking
of the highest ancestor w of x such that

X is the first node (in preorder) in the subtree of w

that has an entry in y’s I-structure.

Now given the query locus v, we first look for
all the links in v’s subtree whose

O;value is less than the preorder ranking of v
(i.e. the corresponding w is an ancestor of v).

This can be done by a (2,1)-range query via repeated RMQs.

This gives the indices of all the left boundaries in the
l-structures |, of the ancestors u of v.

Similarly, use ,to obtain right boundaries.

Space Analysis

Number of entries in N-structures is < 2n-1.
So is the number of links.
So is the number of entries in I-structures overall.

Space for RMQ structures is linear in the size of
data.

Thus overall O(n) words of space.

Construction Algorithms

Running time depends upon how quickly the score functions can be
computed during tree traversal.

For each document d, visit all the leaves corresponding to d and
calculate successive LCAs where N-structure entries are created.

For score=frequency, we simply keep adding the numbers during tree
traversal and write them at LCA nodes.

Now traverse the N-structure in preorder. For each entry, create an
appropriate appending entry in some I-structure.

Create a RMQ structure on each I-structure based upon score.

Create RMQ structures for 6, §, based upon concatenated N-structures
(in preorder).

O(n) time for frequency, importance.

O(n log n) time for proximity. (The bottleneck is score computations,
which require merging of position lists. Use fast BST merging
algorithms.)

Succinct Data Structure

 O(n) words of space in previous framework (i.e.,
O(n log n) bits) is asymptotically bigger than the
size of the actual text (i.e., O(n log | 2| bits)),
especially if the text collection is compressible.

e Can we design data structures that take only as
much space a compressed text? And still
answer queries efficiently?

e We show solutions based on CSA (compressed
suffix array) which takes compressed space.

Sparsification Framework

First assume k (or K) is fixed, let group size g = k log?*€ n.

Take consecutive g leaves (in Suffix tree) from left to
right and make them into groups. Mark the LCA of each
group, and also Mark each node which is an LCA of two
Marked nodes.

Store explicit list of top-k highest scoring documents in
Subtree(v) at each marked node v.

Repeat thisfork=1, 2, 4, 8, 16,

Because of the sampling structure, the total space used
IS
O((n / k log?** n) x k x log n) words
O(n / log® n) bits
o(n) bits

Example

LCA of two marked nodes _ n,a,b,p
a,b,j)l At each marked node

Is also marked
\ The top-k list is stored

a,b,e,f

b,c,d
al ICI e’f’g’h k

Example: Group size =4
We build a CSA on the n/g bottom-level marked nodes.

Answering frequency queries

First convert k to its power of 2 ceiling.

Search for pattern P using CSA and reach v. Find the closest marked
descendant u of v and retrieve the k list at u. Thus, we get the top-k
documents in Subtree(u).

For all the fringe leaves in Subtree(v) — Subtree(u) and for each of these
k documents, explicitly compute its frequency in Subtree(v).

We need to compute frequencies for at most 2g = 2k log?*¢ n documents.

Each frequency can be computed in O(log?*¢ n) time using two version of

CSAs (one for entire text collection combined and one for each individual

document). D log (n/D) bits of space are needed for specifying document
boundaries.

For each document d, first translate the range [L,R] for v into range in
CSA _d. Then compute the number of occurrences within that range in
CSA _d.

Overall, it takes O(p + k log#*¢ n) time.
The space required is 2|CSA| + D log n/D + o(n) bits.

Results, search for pattern P

e O(n)-word data structures
— K-mine, K-repeats , score-threshold: O(p + ndoc) time.
— Top-k highest relevant documents: O(p + k logk) time.
— O(n) and O(nlog n) construction time, resp.

e Succinct data structures

— Frequency
e K-mine : O(p + log? n + ndoc x log#€ n)
e Top-k: O(p + k log**€n)
e Space 2|CSA| + o(n) + D log (n/D)
— Importance : log3*¢n, 1|CSA| space.
— Document retrieval: |CSA| + o(n) + O(D log(n/D)) bits of
space with O(p + ndoc x log'*¢n) time.

— No results for “"Proximity”; not succinctly computable

Conclusions

We gave the first framework that is provably optimal
in query time and uses O(n) words for important set
of string retrieval problems.

Our techniques rely on decomposing range queries
using the tree structure and exploit the reverse tree
structure to avoid predecessor queries.

We give the first succinct solutions to these
important set of problems for frequency and
importance-based metrics.

Open problems:

e Better bounds, implementation.

e External memory and multicore efficiency.

e Approximate search.

