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Overview

 Description of the TurbulenceDB
– As an example of a JHU/IDIES data intensive architecture
– We support several others– We support several others

 Sloan Digital Sky Survey
 PanSTARRs 
 Life Under Your Feet (sensor network for soil ecology)
 Chesapeake Bay Environmental Observatory (environmental data fusion)

 Landscape of data intensive computing (at Universities)
– Power density Amdahl-balanced systemsPower, density, Amdahl balanced systems
– Workload characterization

 Evolution of data intensive architectures
St i ff th– Stepping off the power curve

– From faculty closets to clusters of low-power blades

 I/O challenges in TurbulenceDB
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Background: Turbulence Simulations

 DNS simluations generate 10s to 100s of TBs

 Traditional ways to interact with data:y
– Analyze dynamics on the fly during simulation
– Store and analyze selected snapshots on desktops machines

 If time-evolution needed or 
unforeseen questions arise

– Redo simulationedo s u at o
– Keep large data sets to reload onto 

HPC facilties
– Non-local users: ship hard disks, but 

they still need HPC resources
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Accessibility

“very large simulations remain out of reach of most”

The problem will not automatically get better--even if 
wires get faster, size of “top-ranked simulations” growingwires get faster, size of top ranked simulations  growing 
even faster: i.e. without changing current approach, top-
ranked simulations will be accessible only to a shrinking 
subset of the scientific community.
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The TurbulenceDB Approach
Build databases of the complete space-time history of high-resolution 
multi-scale simulations for:
Ad-hoc inspection and casual usep
Data mining and feature extraction (landmark database)
Public access
Retrospective studies, repeatability, and archivalp , p y,

Databases preserve computational effort
Separate simulation (solving system) from experiment
Repeat experiments without repeating computation
Make high-resolution data available outside HPC

Enable new classes of applicationsEnable new classes of applications
That iterate back and forth through time
That examine large space-time spans
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High-Performance Web Services

Build data warehouses according to Gray’s laws
 Bring the computation to the data

Using active database features such as user defined functions– Using active database features, such as user-defined functions
– Avoid transferring large amounts of data across networks

 Scale out, not scale up
– Rely on inexpensive 

commodity hardware
 Use lightweight 

t i t d denterprise-standard 
middleware

– WSDL and SOAP
I t t ith F t– Integrates with Fortran, 
MATLAB, and R
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Data Set #1:
DNS of forced isotropic turbulenceDNS of forced isotropic turbulence 

(standard pseudo-spectral)

10244 space time history10244 space-time history 
16 -> 27 TBytes 
Re~ 430 
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Data Generation and Ingest
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GetVelocity() Web service

GetVelocity()
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Mediator divides workload spatially

GetVelocity()

Randal Burns, Los Alamos Computer Science Symposium, 13 October 2008



Request dispatched to databases

GetVelocity()
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Velocities are returned
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Collated by Mediator

Randal Burns, Los Alamos Computer Science Symposium, 13 October 2008



…and returned to the User

Randal Burns, Los Alamos Computer Science Symposium, 13 October 2008



Client determines particle tracks

 ∆t =

… and repeats with a new time t…
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Defining Interfaces

 Low-level interfaces are inefficient
– E.g. get velocity at point
– Provide few opportunities for optimization batch operations request– Provide few opportunities for optimization, batch operations, request 

reordering, bulk data transfer

 High-level interfaces are restrictiveg
– E.g. track 1M particles through 1K timesteps
– Allow for little customization or transparency/interactivity
– Requires a new Web service for each new experimentq p

 Middle ground: request batches of data points with 
server-side space/time interpolation, gradients, etc.p p , g ,

– Perform common compute intensive tasks at server 
– I/O and scheduling optimizations possible
– But, client code customizes experiment (e.g., particle mass)
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Demo of Particle Tracking
do iter = 1,100,1

time = time + deltat

CALL getvelocity(time, Lagrangian6thOrder, g y( , g g ,
PCHIPInterpolation, n, points, dataout)

do i=1,n,1

do k=1 3 1do k=1,3,1

points(k,i)=points(k,i)+dataout(k,i)*deltat

end do

d dend do

end do
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The evolution of a shape
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… and the pre-history

not possible during DNS simulation
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Sample code (gfortran 90) running on this Mac (unix)

Get velocity gradients on a plane 
and evaluate dissipation
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The University Data Intensive Landscape

 Scientific (and other) data double every year
 Trend driven by

Inexpensive sensors– Inexpensive sensors
– Increased storage density

 More data-intensive scalable architectures needed

 Most scientific data analysis done on small to midsize 
BeoWulf clusters from faculty startupBeoWulf clusters, from faculty startup

 Universities hitting the “power wall”
 Not scalable, not maintainable…,

 How to build a scalable, data-intensive architecture?
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Amdahl’s Laws

Gene Amdahl (1965):  Laws for a balanced system
P ll li d i S/(S P)i. Parallelism: max speedup is S/(S+P)

ii. One bit of IO/sec per instruction/sec (BW)
iii One byte of memory per one instruction/sec (MEM)iii. One byte of memory per one instruction/sec (MEM)

Modern multi-core systems move farther 
away from Amdahl’s Laws 
(Bell Gray and Szalay 2006)
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Amdahl Numbers for Data Sets
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Typical Amdahl Numbers

 National infrastructure focused on CPU cycles
 Even HPC projects choking on I/O

S i l Sociology:
– Data collection in larger collaborations
– Analysis decoupled, from data archived by smaller groups
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Architecture v1 (Commodity Closet)

 Commodity cluster (4 nodes)
2 Q d I l X 2 33GH 8G RAM– 2x Quad-core Intel Xeon 2.33GHz, 8G RAM

– 12, 750 GB SATA drives per node 

 Amdahl I/O number = 0.70
– Processors: 2 GHz * 4 cores = 2^33 cycles per sec
– I/O:12 spindles * 60 MB/s ~ 2^33 bits/sec

 Simple configuration for data-intensive computing Simple configuration for data intensive computing
– Result is an Amdahl balanced system
– Storage density dictates that if I/O can keep up, then we have sufficient 

capacity for Turbulence datacapacity for Turbulence data
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Architecture v2

 Implement Jim Gray’s vision of data-
intensive, scale-out computing

– High Amdahl number (>0.5)
 Distributed SQLServer cluster/cloud

– 1.1PB disk, 500 CPUs
– Connected with 20 Gbit/sec Infiniband
– Linked to 1500 core compute cluster
– 10 GB lambda uplink to UIC

 Dedicated to eScience, provide 
publicly-accessible Web services

 Funded by Moore Foundation, y ,
Microsoft  and Pan-STARRS
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GrayWulf Performance
 Demonstrated large scale computations involving  ~200TB of DB 

data (won SC08 Storage Challenge)
– DB speeds close to “speed of light” (72%)p p g ( )

 Scale-out over SQL Server cluster
– 70GB/s for 46 nodes from <$700K

 Very cost efficient: $10K/GBpsVery cost efficient: $10K/GBps
 Amdahl number:  0.56
 But: hitting the “power wall”!!!!
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Cyberbricks/Amdahl Blades

 Scale down the CPUs to the disks!
– Solid State Disks (SSDs)
– 1 low power CPU per SSD– 1 low power CPU per SSD

 Current SSD parameters
– OCZ Vertex 120GB, 250MB/s read, 10,000 IOPS, $300
– Power consumption 0.2W idle, 1-2W under load

 Low power motherboards
– Intel dual Atom N330 + ION chipset  28W at 1.6GHzp

 Combination is perfect Amdahl blade
– 200MB/s=1.6Gbits/s   1.6GHz of Atom
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Building a Low Power Cluster

Szalay, Bell, Huang, Terzis, White (HotPower09 paper):

Evaluation of many different motherboard + SSD combinations
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Scaling: Sweet Spot Found 

system              CPU[GHz]     seqIO[GB/s]      kIOPS    disk[TB]   power[W]     cost [$]        rel. power       nodes

Scaled to a fixed sequential read rate

Cost includes 3 years of operation plus HWCost includes 3 years of operation plus HW

 Scaledown and power savings overcome SSD costp g
 SSDs radically alter capacity/performance ratios
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Status

 Compared many low power motherboards, SSDs
 Building 50 node cluster for under $50K
 Zotac Atom/Ion motherboards received from NVIDIA

– N330 dual core CPU + 4GB memory
– 16 GPUs with integrated memory controller
– 3 SATA ports

 Adding two OCZ Vertex drive we measure
500MB/sec sequential read– 500MB/sec sequential read

– 400MB/sec sequential write
– 20,000 IOPS

28W power consumption– 28W power consumption

 2009 NSF HECURA Award (PI Szalay)
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Architecture Summary

 Science community starving for storage and I/O
– Data-intensive computations as close to data as possible

 Need objective metrics for I/O systems
– Amdahl number appears to be good match to applications

F i l f l l hi Future in low-power, fault-tolerant architectures
– Need to get off the curve leading to power wall
– We propose scale-out “Amdahl Data Clouds”
– On our way to a medium size testbed

 Real reference applications for objective metrics
U l d t t f l bilit t di (100TB )– Use large data sets for scalability studies (100TB+)
e.g. SDSS, Pan-STARRS, Sensors, Turbulence
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TurbulenceDB: Usage Statistics

 Built our on-line user community
– 10-12 Heavy users
– 160 separate IP addresses.
– Researchers without HPC facilities 
– International users
– Educational applications
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Popularity: 
The Downfall of Data-Intensive Science?The Downfall of Data Intensive Science?

Access speeds by request size Heavy usage restricts Access speeds by request size
Np points distributed randomly in (0,2)3community accessibility

– A single user issuing a 
“data-intensive” session can 
occupy the entire system for 
seconds to hours!

 I/O resources need to 
be allocated and 
optimized in data-p
intensive clusters
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Directions for I/O Scaling

 Data-Driven Batch Scheduling
– I/O sharing for queries with overlapping data requirements

 Managing/Allocating I/O as a first class citizen
– Integration with HPC scheduling
– Balanced utilization of I/O, memory, and compute through 

reconfiguration, elasticity, and co-scheduling for parallel jobs
– Another 2009 NSF HECURA grant (PI Burns)

 Replicating services and partitioning users
– Into long-running, data-intensive sessions (for batch scheduling)
– And casual/exploratory use (for demand scheduling)
– We’ve done this for the Sloan Digital Sky Survey for 2+ years

Randal Burns, Los Alamos Computer Science Symposium, 13 October 2008



More About TurbulenceDB Workload

 Many casual users, few intense users
 Even largest jobs request 108 points (out of 1012 total)
 But, large jobs have spatial and temporal commonality
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Time Step Accessed by Job
(colors denote unique users)
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Spatial Region Accessed by Job
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Data-Driven Batch Scheduling

 Identify jobs with overlapping I/O requirement and co-
schedule their execution on each timestep

Perform I/O once to each timestep for all outstanding jobs– Perform I/O once to each timestep for all outstanding jobs
– Synchronize jobs that iterate through time

C t b t h d i i t f Create batch and session interfaces
– Sessions declare their time/space spans
– Declarative: compute a function against a selected time/space region, 

hi h ll f t f d tiwhich allows for out-of-order execution

 Previous results show >2x throughput improvement on 
declarative Astrophysics queries

– Wang et al. CIDR 2009
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Future Directions for TurbulenceDB

 Low-power Amdahl blades
 I/O Enhancements

 Integration of DISC and HPC
– For re-simulation, refinement, or compute intensive analysis

F id ll l i t– For rapid parallel ingest

 Multi-resolution storage
For fast coarse grained ad hoc queries– For fast coarse-grained ad-hoc queries

– Support for visualization systems

 Improved metadata Improved metadata
– Landmarks database
– Support for education applications
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