
Assigning Blame

Nick RutarNick Rutar
Jeffrey K. Hollingsworth

University of Maryland

University of Maryland

Motivation

 Parallel languages becoming more matureg g g
 Parallel frameworks becoming more common

– PETSc, Cactus, POOMA, GrACE
F k id Frameworks provide
– High level abstractions for mathematics

• Matrices, Vectors, (Non)Linear Systems, PDEs
– Masking of low level parallel constructs

 More levels of abstraction complicates
– ProfilingProfiling
– Debugging

University of Maryland
2

Parallel Framework Mapping

 Traditional profiling represented as
F ti B i Bl k St t t– Functions, Basic Blocks, Statement

 Frameworks have intuitive abstractions
Direct ties with mathematical terms– Direct ties with mathematical terms

 Map profiling information to variables
– Maps to abstractions in case of frameworksMaps to abstractions in case of frameworks
– Also can be used for standard programs

• Map Structs, Classes, Arrays, Scalars

University of Maryland
3

Example PETSC Program*
* - $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex23.c

int main(int argc,char **args) {
Vec x, /* approx solution */

b, /* right hand side */
u; /* exact solution*/

50% cache
misses

30% MPI
Mat A; /* linear system matrix */
KSP ksp; /* linear solver context */
PC pc; /* preconditioner context */

VecCreate(PETSC_COMM_WORLD,&x);

30% MPI
operations

40% run
time

VecDuplicate(x,&b);
VecDuplicate(x,&u);
MatCreate(PETSC_COMM_WORLD,&A);
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
/* Set exact solution */
VecSet(u,one);
MatMult(A,u,b);
/* Create linear solver context */
KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCJACOBI);

University of Maryland

/* Solve linear system */
ierr = KSPSolve(ksp,b,x); }

4

Variable “Blame”
 Record activity in a function
 Build association tree of writes from ground upg p
 Use transfer function to filter information up

– Up the call stack
– Aggregate over distributed nodes– Aggregate over distributed nodes

 Eventually reach high level abstractions
– Example: Matrix abstraction

• Allocated storage for actual data
– Sparse or Dense

• Storage for bookkeeping
 Augments traditional profiling approaches

University of Maryland
5

Blame Calculation Components

Static Analysis Runtime
(Instances)

Transfer Functions PAPILLVM IR Transfer Functions

M C t i

Generation Application

PAPI
Hardware
Counter
Sampling

LLVM IR
Generation

VariableMem Containers
Stubs Allocation/Free Dynamic

Instrumentation
Implicit/
Explicit
Data Flow

Variable
Blame

Static Dynamic

Container Resolution
StackWalker API

Data Flow
Relationships

University of Maryland
6

Data Flow Relationships for Blame

 Two kinds of relationships
E li it Explicit
– Small sample snippet

int a b c; int a, b, c;
a = 7;
b = 8; b 8;
c = a + b;

– Blame goes to cg
 Implicit

– Control Flow Operations

University of Maryland

p
• Loop indices, conditional statements

7

Calculating Data Flow Relationships

 Use LLVM for intermediate representation
– Allows same approach for all supported languagesAllows same approach for all supported languages

• C, C++, Fortran
 Calculate explicit blame Calculate explicit blame

– Create dependency graph based on data flow
– Focus on nodes with no incoming edgesg g

 Calculate implicit blame
– Generate control flow graph & dominator treeg p
– Calculate basic blocks affected by control flow

University of Maryland
8

Transfer Functions

 Establish “Exit Variables” for each function
– Those variables that are live after function endsf fu

• Parameters
• Return Value
• Modified Global/Static Variables

G d H V bl• Generated Heap Variables
 Create transfer function in terms of exit variables
 Special transfer functionsp

– Source is not available
• Series of Heuristics used to calculate blame

– Return value with no params, all blame to returnReturn value with no params, all blame to return
– Well defined APIs

• math.h
– Know that all blame for sqrt(double) goes to return

University of Maryland

– Know that all blame for sqrt(double) goes to return

9

Mem-Containers

 Representation of memory operations
– Stack and Heap basedStack and Heap based

 Represents unique contiguous memory region
 Mappings handled with container resolution Mappings handled with container resolution

– Ultimately map up to program variables
– Mem-containers can map to other mem-containersp

 Discovered through static/dynamic analysis
– Static determines allocation points

• Stubs created at these points
– Dynamic happens for each instantiation

• Full path of allocation calculated

University of Maryland

• Full path of allocation calculated

10

Instance Generation (Sampling)

 Represents operations at each sample
C diff t t i f li Can use different metrics for sampling
– L2 Cache misses, floating point ops, cycles

M d t ith t i i bl Mapped to either mem-container or variable
 Information recorded per thread and node
 Gather context (stack) at each sample
 Implementationp

– PAPI to generate samples
– Stackwalk API for context sensitive information

University of Maryland
11

Final Variable Blame

 Given to user at various “blame points”
Bl i t b Blame point can be
– “main” function

Where blame cannot be propagated up– Where blame cannot be propagated up
• Set of exit variables is null
• Function with void params & void returnFunction with void params & void return

– Any function deemed interesting by user
– Any function that matches defined criteriay

• Contains a variable that has threshold of blame

University of Maryland
12

Experimental Results

 Chose three programs with similar properties
to those found in parallel frameworksto those found in parallel frameworks

 Blame metric is number of cycles
F h li i t (i t) For each sampling point (instance)
– Instance gets blamed for set number of cycles

V i bl th t inst n m ps p t ts bl m – Variable that instance maps up to gets blame

University of Maryland
13

FFP_SPARSE

 C++ program that solves Poisson’s Equation
Approximately 6 700 lines of code & 63 Functions– Approximately 6,700 lines of code & 63 Functions

 Non-parallel program
U S M t i Uses Sparse Matrices
– No specific data structure for representation

Composite of primitive pointers declared in ‘main’– Composite of primitive pointers declared in main
 Recorded 101 samples from program run

University of Maryland
14

FFP_SPARSE Results
Name Type Description Direct Blame (%)
node_u double * Solution vector 0 35 (34.7)

a double * Coefficient matrix 0 24.5 (24.3)

ia int * Non-zero row indices of a 1 5 (5.0)

ja int * Non-zero column indices of a 1 5 (5.0)j ()

element_neighbor int * Estimate of non-zeroes 0 10 (9.9)

node_boundary bool * Bool vector for boundary 0 9 (8.9)

f d bl * Ri ht h d id f t 0 3 5 (3 5)f double * Right hand side of vector 0 3.5 (3.5)

Other - 99 9 (8.9)

Total - 101 101 (100)

University of Maryland
15

QUAD_MPI

 C++ MPI program
Approximates multidimensional integral– Approximates multidimensional integral

– Approximately 2000 lines of code & 18 functions
 Program interesting to look at handling MPI Program interesting to look at handling MPI
 Ran on 4 Red Hat Linux nodes

OpenMPI 1 28– OpenMPI 1.28
– Range of 94-108 samples per node

University of Maryland
16

QUAD_MPI Results

Name Type N1 (%) N2 (%) N3(%) N4(%) Total
(%)

Dominant
MPI Call

Blame (per Node)

(%) MPI Call
dim_num int 27(27.2) 90(95.7) 97(84.3) 102(94.4) 316 (76.0) MPI_Bcast

quad double 19(19.2) 1(1.1) 5(4.3) 5(4.6) 30 (7.2) MPI_Reduce

t sk p i t 15(15 2) 15 (3 6) MPI S dtask_proc int 15(15.2) - - - 15 (3.6) MPI_Send

w double * 9(9.1) - - - 9 (2.1) -

point_num
proc

int - 1(1.1) 7(6.1) - 8 (1.9) MPI_Recv
_proc
x_proc double * - 2(2.1) 5(4.3) - 6 (1.4) MPI_Recv

Other 3(3 0) 3 (0 7)Other - 3(3.0) - - - 3 (0.7) -

Output - 6(6.1) - 1(0.9) 1(0.9) 8 (1.9) -

Total - 99(100) 94(100) 115(100) 108(100) 416 (100) -

University of Maryland

() () () () ()

17

HPL (Linpack)

 C program that solves a linear system
Utilizes MPI and BLAS– Utilizes MPI and BLAS

– Has wrappers for functions from both libraries
– Operations done on dense matricesOperations done on dense matrices
– Approximately 18,000 lines of code
– 149 source files

 32 Red Hat nodes connected via Myrinet
– OpenMPI 1.2.8p
– Range of 149-159 samples over the nodes

University of Maryland
18

HPL Results
Name Type Mean (%) Node St Dev

Blame over 32 Nodes
Name Type Mean (%) Node St. Dev.

All Instances - 154.7 (100) 2.7

main

mat HPL_T_pmat 139.3 (90.0) 2.8

grid HPL_T_grid 2.2 (1.4) 0.4

mainHPL_pdtest

Anorm1 double 1.4 (0.9) 0.8

AnormI double 1.1 (0.7) 1.0

XnormI double 0.5 (0.3) 0.7

Blame
Points

XnormI double 0.5 (0.3) 0.7

Xnorm1 double 0.2 (0.1) 0.4

A HPL T pmat * 136 6 (88 3) 2 9
mainHPL_pdtestHPL_pdgesv

A HPL_T_pmat 136.6 (88.3) 2.9

PANELL2 HPL_T_pmat 112.8 (72.9) 8.5

PANELA double 12 8 (8 3) 3 8

mainHPL_pdtestHPL_pdgesvHPL_pdgesv0

University of Maryland
19

PANELA double 12.8 (8.3) 3.8

PANELU double 10.2 (6.6) 5.2

Conclusion
 Variable “blame” mapping

– Switch analysis from delimited regions to variables
– Used to represent abstractions in parallel

frameworks, standard programs as well
– Application Programmer Centric Analysis Application Programmer Centric Analysis

 Target applications are large and parallel
– Many levels of abstractiony
– Data structures map to mathematical constructs

 Future work
– Create corpus of shared library transfer functions
– Create GUI for data presentation

Evaluate system on larger programs

University of Maryland

– Evaluate system on larger programs
20

Further Information

 Europar 2009 paper
www dyninst org/papers/euroPar09 pdf– www.dyninst.org/papers/euroPar09.pdf

 SC’09 Demo
Booth 2449 (Dyninst and Paradyn Projects)– Booth 2449 (Dyninst and Paradyn Projects)

University of Maryland

