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TOP 10 Machines (6/2004)
Rank Site Computer #proc TF/s Country

1 Earth simulator center Earth simulator/NEC 5120 35860 Japan

2 LLNL Thunder/Intel Itanium 2 Tiger 
41.4GHz Quadrics

4096 19940 USA

3 LANL ASCI Q/AlphaServer SC45 
1.25GHz

8192 13880 USA

4 IBM-Rochester BlueGene/LDD1 Prototype 8192 11680 USA

5 NCAS Tungsten/PowerEdge 1750, P4 
Xeon 3.06Ghz

2500 9819 USA

6 ECMWF eServer P Series690 IBM 2112 8955 UK

7 RIKEN RIKEN Super Combined 
Cluster/Fujitsu

2048 8728 Japan

8 IBM-Thomas Watson BlueGene/LDD2 Prototype 2096 8655 USA

9 PNNL Integrity rx2600 Itanium 21.5 GHz 1936 8633 USA9 PNNL Integrity rx2600 Itanium 21.5 GHz 1936 8633 USA

10 Shanghai Supercomputer 
Center

Dawning 4000A
Opteron 2.2GHz

2560 8061 China

i
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Cloud: Integrated ResourceCloud: Integrated Resource
Provide virtual computing 
environments on demandenvironments on demand
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72 Racks

Petaflops
System

Scalable Computing: 
the Way to High-performance

32 Node Cards
1024 chips, 4096 procs

72 Racks 
Cabled 8x8x16Rack

the Way to High performance

IBM BG/P

Maximum 14 TF/s

1 PF/s
144 TB(32 chips  4x4x2)

32 compute, 0-2 IO cards

Node Board
Source: ANL ALCF

System
256 racks
3.5 PF/s
512 TB 

1 chip, 20 
DRAMs

14 TF/s
2 TBCompute Card

435 GF/s

4 cores

13.6 GF/s
2.0 GB DDR

Chip
64 GB 

Front End Node / Service Node
System p Servers

HPC SW:
Compilers

GPFS
ESSL
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850 MHz
8 MB EDRAM

2.0 GB DDR
Supports 4-way SMP

System p Servers
Linux SLES10

SS
Loadleveler



Multicore Adds in  Another Dimension

AMD Phenom:
4 cores, 2007

IBM Cell: 8 slave cores
+ 1 master core, 2005

S T2 8Sun T2: 8 
cores, 2007
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Intel Dunnington: 6 cores, 2008



No in the Mood to Scale Up, yet

AMD Opteron “Istanbul”:
6 Cores, 2009

Intel Dunnington: 
6 cores, 2009

Sun UltraSPARC Rock:
16 cores, 2009

IBM Power-7: 8 cores, 2010



Why not Scale up the Number of Cores?
Perception/technology?                   
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Whereas Technology is AvailableWhereas Technology is Available

Tesla C1060:
240 b NVDIA

Kilocore: 256-core prototype
By Rapport Inc.

GRAPE-DR chip: 
512 B J

240 cores, by NVDIA

512-core, By Japan

Quadro FX 5800: 240 cores, 
By NVDIA.
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GRAPE-DR testboardNVIDIA Fermi: 512 CUDA cores



It All Starts with Amdahl’s LawIt All Starts with Amdahl s Law

 Gene M. Amdahl, “Validity of the Single-Processor Approach , y f g pp
to Achieving Large Scale Computing Capabilities”, 1967

 Amdahl’s law (Amdahl’s speedup model)
11

(1 )
AmdahlSpeedup ff

n


 

f i h ll l i

1lim
1Amdahln

Speedup
f




 f is the parallel portion
 Implications
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Amdahl’s Law for Multicore (Hill&Marty)

 Hill & Marty, “Amdahl’s Law in the Multicore Era”, IEEE 
Computer, July 2008

 Study the limitation of multicore architecture based on 
Amdahl’s law for parallel processing and hardware concern
 n BCEs (Base Core Equivalents) n BCEs (Base Core Equivalents)
 A powerful perf(r) core built with r BCEs is best choice from design 

concern
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Amdahl’s Law for Multicore (Hill&Marty)

 Speedup of symmetric architecture
1( , , ) 1symmetricSpeedup f n r f f r

 

 Speedup of asymmetric architecture
( ) ( )
f f

perf r perf r n




1( )S d f( , , ) 1
( ) ( )

asymmetricSpeedup f n r f f
perf r perf r n r





 

10/29/2009 Scalable Computing Software Lab, Illinois Institute of  Technology 11



History Repeats Itself (back to 1988)?

All have up to 8 
processors, citing 
Amdahl’s law, 

1lim A d hlSpeedup 

IBM 7030 Stretch

IBM 7950 Harvest

lim
1Amdahln

Speedup
f 

Cray X-MP

Cray Y-MP
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Terms of Scalable Computing (today)Terms of Scalable Computing (today)

TACC Ranger:
15,744 processors, 

2008

LANL Roadrunner:

2008

LANL Roadrunner: 
18,360 processors, 130,464 cores

2009 World’s fastest supercomputer

ANL Intrepid: 

The scale size is far 
beyond implication 

of Amdahl’s law
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Scalable Computingp g
 Tacit assumption in Amdahl’s law

 The problem size is fixed
1-f f

 The problem size is fixed
 The speedup emphasizes time reduction

 Gustafson’s Law, 1988
1-f f*n

Work: (1-f)+nf

Work: 1

 Fixed-time speedup model

fixed time
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

    


    

Work: (1-f)+nf

 Sun and Ni’s law, 1990
 Memory-bounded speedup model

(1 )f nf  

S ti l Ti f S l i S l d W kl d    

(1 ) ( )
(1 ) ( ) /

memory bounded
Sequential Time of Solving Scaled WorkloadSpeedup
Parallel Time of Solving Scaled Workload

f fG n
f fG n n


    


    

 


 
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Revisit Amdahl’s Law for Multicore
original

fixed size
enhanced

T
Speedup

T 

original
wT w

perf(1)
 

(1 )f w fw(1 )
( ) ( )

enhanced
f w fwT nperf r perf r

r


 


w

(1 )
( ) ( )

fixed size
perf(1)Speedup f w fwr

perf r n perf r

 





Hill and Marty’s 
findings

1
1

( ) ( )
f f r

perf r perf r n


 



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Fixed-time Model for Multicore
 Emphasis on work finished in a fixed time
 Problem size is scaled from w to w'
 w': Work finished within the fixed time, when the number of cores 

scales from r to mr
(1 ) (1 ) 'f w fw f w fw  '

 The scaled fixed-time speedup

( ) ( )
( ) ( ) ( ) ( )
f f f f

perf r perf r perf r perf r m
   'w mw=>

'Ti f S l i i O i i l M d     '

(1 ) '

fixed time
Time of Solving w in Original ModeSpeedup
Time of Solving w in Original Mode

f w fw



     


     



( ) ( ) (1 )

( )

perf r perf r f mfw
perf r


   
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Fixed-time Speedup for Multicore

1200
Fixed-time Speedup of Multicore Architecture

 

1000

f = 0.2
f = 0.4
f = 0.6
f = 0.8
f = 0.9
f = 0 92

Scales 

600

800

Sp
ee

du
p

f  0.92
f = 0.94
f = 0.96
f = 0.98

linearly

400

S

4 32 64 128 256 512 1024
0

200

 

10/29/2009 Scalable Computing Software Lab, Illinois Institute of  Technology 17

Number of Cores



Memory-bounded Model for Multicore
 Problem size is scaled from w to w*
 w*: Work executed under memory limitation (each core has its own y (

L1 cache)

 w* = g(m)w, where g(m) is the increased workload as the memory 
capacity increases m times (g(m) = 0 38m3/2 for matrixcapacity increases m times (g(m) = 0.38m3/2, for matrix-
multiplication 2N3 v.s. 3N2)

 The scaled memory-bounded speedup

*

memory bounded
Time of Solving w in Original ModeSpeedup
Time of Solving w in Original Mode

     


     
(1 ) ( )

( )(1 )

f g m f
g m ff

m

 


 
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Memory-bounded Speedup for Multicore
1200

Memory-bounded Speedup of Multicore Architecture
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Perspective: a comparison
1200

Fixed-size, Fixed-time and Memory-bounded Speedup of Multicore Architecture
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Result and Implications

 Result : The scalable computing concept and the two scaled 
speedup models are applicable to multicore architecture

 Implication 1: Amdahl’s law (Hill&Marty) presents a limited and 
pessimistic viewp

 Implication 2: Multicore is scalable in term of the number of cores
 Implication 3: The memory-bounded model reveals the relation 

b t l bilit d it d i tbetween scalability and memory capacity and requirement

Question:
Is data access the actual performance constraint 

of multicore architecture?
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Processor-memory performance gap

 Processor performance 
increases rapidly

10 000

100,000
Multi-core/many-core processor

increases rapidly
 Uni-processor: ~52% until 

2004, ~25% since then
Source: Intel 60%

100

1,000

10,000

P
er

fo
rm

an
ce Uni-rocessor

 New trend: multi-core/many-
core architecture
 Intel TeraFlops chip, 2007

25%

52%
20%

1

10

1980 1985 1990 1995 2000 2005 2010

Year

Memory Aggregate processor 
performance much higher

 Memory: ~9% per year
9%9%

y p y
 Processor-memory speed gap 

keeps increasing
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Multicore Scalability Analysis
 Architecture

 N cores
 Data contention to L2 Data contention to L2
 Increase cores does not 

improve data access 
speedp

10/29/2009 Scalable Computing Software Lab, Illinois Institute of  Technology 23

23



Application: Iterative Solvers
• Two phases: 

• Computing phase and communication phase

Dense Solver
Synchronization/Communication

k3 comp, k2 memory

k Synchronization/Communication
Ti

m
e

k
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Data Access as the Scalability ConstraintData Access as the Scalability Constraint

 Phased computing model (embarrassing parallel, meta-tasks)
 Assume a task has two parts, w = wp + wc

 Data processing work, wp

D i i ( ) k Data communication (access) work, wc

 Fixed-size speedup with data-access processing consideration

1

( ) ( )
pc

Speedup w rw
perf r perf r n





( ) ( )perf r perf r n
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Scaled Speedup under Memory-wallScaled Speedup under Memory wall
 Assuming data access time is fixed, Fixed-time model constraint

'p pc cw ww w
   'w mw

 Fixed-time speedup
( ) ( ) ( ) ( )perf r perf r perf r m perf r

  


'p pw mw=>

'w '
( ) ( ) (1 ') '

( ) ( )

pc
c p

p c pc

ww
w m wperf r m perf r f mfw w ww

f f

      


 ' pw
f

 Memory-bounded speedup
Wi h b d d d i bi h fi d

( ) ( )perf r perf r ' p

c p
f

w w




3/ 2
 With                           memory-bounded speedup is bigger than fixed-

time speedup
 g(m) equals one, memory-bounded is the as fixed-size, g(m) equals m, 

then memory bound is the same as fixed time

3/ 2( ) 0.38g m m
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Mitigating Memory-wall Effectg g y
 Result: Multicore is scalable, but under the assumption

 Data access time is fixed and does not increase with the amount 
f k d h b fof work and the number of cores

 Implication: Data access is the bottleneck needs attention

 Data Prefetching Data Prefetching
 Software prefetching technique

 Adaptive, compete for computing power, and costly
 Hardware prefetching technique

DF
Memory Wall

 Hardware prefetching technique
 Fixed, simple, and less powerful

 Our Solutions
D t A Hi t C h (DAHC)

L2

L1 Data Access History Cache (DAHC)
 ServerServer--based Push Prefetching based Push Prefetching 
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Hybrid Adaptive Prefetching ArchitectureHybrid Adaptive Prefetching Architecture

Hybrid Adaptive PrefetchingCore

Data 
Access 
Histories

Core

L1 $
Demand requests

Sequential

Core

L1 $
Core

L1 $
Core

L1 $

Prefetch
generator

Programmer
Pre execution

Stride

Markov

…

Prediction

Memory

Hints

Pre-compiler

…

Pre-executiony

Disk
Prefetch queue

Access
Scheduler

Disk
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Data Access History Cache: a 
hardware solution for memoryhardware solution for memory

tag data S
T

M
K

M
T

S
Q

DAHC

L1 data
L1 cache

T K T Q

Prefetcher

SQ Counter

Prefetcher

C
o
mL2 cache

MK Counter

MT Counter

SQ Counter

Prefetch
p

ST Counter

MK Counter Prefetch 
Counter
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Push-IO: A Software Solution for I/OPush IO: A Software Solution for I/O
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Dynamic Application-specific I/O 
Optimization ArchitectureOptimization Architecture
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Conclusion

 Cloud computing and multicore/manycore architecture 
lead to the future of computinglead to the future of computing

 Multicore architecture is scalable 
 Scaling up the number of cores can continually g p y

improve performance, if the data access delay is fixed 
 Data access is the killing factor of performance

i i i ll f hi Mitigating memory-wall: Data prefetching
 Data Access History Cache (DAHC)
 ServerServer based Push Prefetchingbased Push Prefetching ServerServer--based Push Prefetchingbased Push Prefetching

 Mitigating memory-wall: Application-specific data 
access system
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Thank you!Thank you!

To visit http://www.cs.iit.edu/~scs
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