
A New Vision for Coarray Fortran
John Mellor-Crummey and Laksono Adhianto and William Scherer III

Department of Computer Science
Rice University

Houston, TX, USA
{johnmc, laksono, scherer}@rice.edu

Abstract—In 1998, Numrich and Reid proposed Coarray
Fortran as a simple set of extensions to Fortran 95 [7].
Their principal extension to Fortran was support for shared
data known as coarrays. In 2005, the Fortran Standards
Committee began exploring the addition of coarrays to
Fortran 2008, which is now being finalized. Careful review
of drafts of the emerging Fortran 2008 standard led us to
identify several shortcomings with the proposed coarray
extensions. In this paper, we briefly critique the coarray
extensions proposed for Fortran 2008, outline a new vision
for coarrays in Fortran language that is far more expres-
sive, and briefly describe our strategy for implementing the
language extensions that we propose.

I. Introduction
In 1998, Numrich and Reid proposed a small set of

extensions to Fortran 95 to support parallel programming
that they dubbed Coarray Fortran (CAF) [7]. They envi-
sioned CAF as a model for SPMD parallel programming
based on a static collection of asynchronous process
images (known as images for short) and a partitioned
global address space. Their principal extension to Fortran
was support for shared data in the form of coarrays.
Coarrays extend Fortran’s syntax for type declarations
and variable references with a bracketed tuple that is
used to declare shared data or access data associated
with other images. For example, the declaration
integer :: a(n,m)[*]

declares a shared coarray with n × m integers local to
each image. Dimensions in the bracketed tuple are called
codimensions. Coarrays may be declared for primitive or
user-defined types. The data for a coarray associated with
an image may be a singleton instance of a type rather
than an array of type instances. Instead of explicitly
coding message exchanges to obtain data belonging to
other images, a CAF program can directly access a
coarray associated with another image by appending a
bracketed tuple to a reference to a coarray variable. For
instance, any image can read the first column of data in
coarray a from image p by executing the right-hand side
reference a(:,1)[p].

Numrich and Reid’s design for CAF included sev-
eral synchronization primitives. The most important
of these are the synchronous barrier sync_all;
sync_team, which is used for synchronization among

dynamically-specified teams of two or more processes;
and start_critical/end_critical, which con-
trol access to a global critical section.

In 2005, the Fortran Standards committee began ex-
ploring the addition of coarray constructs to the emerging
Fortran 2008 standard. Their design closely follows
Numrich and Reid’s original vision. Coarrays are shared
data allocated collectively across all images. A coarray
can have multiple codimensions enabling one to conve-
niently index a coarray distributed over a grid of process
images that is logically multidimensional. Our earlier
criticisms about Numrich and Reid’s teams in CAF sup-
porting only all-pairs communication rather than efficient
collective operations led the Fortran Standards Commit-
tee to consider support for pre-arranged image teams.
Unfortunately, support for image teams has been tabled
for Fortran 2008, although it may be considered for
inclusion in the future. A previous detailed critique [5]
of the coarray extensions proposed for Fortran 2008 and
a recent review of the latest working draft for Fortran
2008 [3] revealed several shortcomings in emerging
coarray extensions that limit their expressiveness:

• Coarrays must be allocated over all images; there
is no support for processor subsets.

• Coarrays must be declared as global variables; one
cannot dynamically allocate coarrays into a local
variable in a scope.

• The coarray extensions lack any notion of remote
pointers, which are essential for remotely manipu-
lating of any kind of linked data structure.

• Reliance on named critical sections for mutual
exclusion hinders scalable parallelism.

• Fortran 2008’s sync images statement (a
reworked version of Numrich and Reid’s
sync_team) enables one to synchronize directly
with one or more images; however, this construct
doesn’t provide a safe synchronization space. As
a result, synchronization operations in user’s code
that are pending when a library call is made can
interfere with synchronization in the library call.

• There are no mechanisms to avoid or tolerate la-
tency when manipulating data on remote images.

• There is no support for collective communication.
These shortcomings caused us to rethink the CAF

model. Our interest is in developing an expressive set
of parallel extensions for Fortran that map well onto
parallel systems of all sizes, ranging from multicore
nodes to petascale platforms. In this paper, we pro-
pose a new vision for coarray-based extensions to the
Fortran language. Our design focuses on three core
tenets: orthogonality, expressiveness, and simplicity. In
a nutshell, it provides full support for processor subsets,
logical topologies that are more expressive than multiple
codimensions, dynamic allocation of coarrays, scalable
mutual exclusion, safe synchronization spaces, latency
hiding, collective communication, and a memory model
that enables one to trade ease of use for performance.

II. Coarray Fortran 2.0
Here, we describe an expressive set of coarray-based

extensions to Fortran that we believe provide a pro-
ductive parallel programming model. Compared to the
emerging Fortran 2008, our coarray-based language ex-
tensions include some additional features:

• process subsets (§III), which support coarrays,
collectives, and relative indexing for pairwise op-
erations

• topologies, which augment teams with a logical
communication structure (§IV)

• dynamic allocation/deallocation of coarrays (§V)
– local variables within subroutines: declaration

and allocation of coarrays inside procedures
scope is critical for library based-code.

– team-based coarray allocation and deallocation
– global pointers in support of dynamic data

structures (§VI)
• enhanced support for synchronization (§VII) for

fine control over program execution
– safe and scalable support for mutual exclusion

(§VII-A)
– split-phase barriers (§VII-B) for overlapping

communication and computation
– events, which provide a safe space for point-

to-point synchronization (§VII-C)
• collective communication (§VIII)
• a memory model (§IX) that enables one to trade

ease of use for performance
Most of these ideas are inspired by features in

MPI [10] and Unified Parallel C [2]. Here, we describe
their realization as a cohesive whole to support paral-
lelism in Fortran.

III. Process subsets
Processor subsets is a useful abstraction for decom-

posing work in a parallel application. Processor subsets

team split(existing_team, color, key, new_team,
new color = result_color)
err msg = emsg_var)

color, key, and result_color are integers
existing_team and new_team are team variables
emsg_var is a scalar character variable

Fig. 1. Team split: Forming new teams from an existing one.

can be used in coupled applications (e.g., ocean and
atmosphere subsets in a climate application) as well
as within dense numerical linear algebra (e.g., row and
column subsets to coordinate operations such as pivot
selection and row interchange). Drafts of Fortran 2008
included support for image teams; however, these teams
were designed solely to support collective communica-
tion. Here we describe a broader vision for teams.

In CAF 2.0, a team is a first-class entity that consists
of an ordered sequence of process images. Teams need
not be disjoint and a process image may be a mem-
ber of multiple teams. A team serves three purposes.
First, it represents a set of process images. This set
of images can serve as a domain onto which coarrays
may be allocated. Second, it provides a namespace
within which process images and coarray instances can
be indexed by an image’s rank r in a team t, where
r ∈ {0..team_size(t) - 1}, rather than an abso-
lute image ID. As identified by Skjellum [9], relative
indexing by rank is particularly useful for supporting
the development of libraries, where code needs to be
reusable across sets of processor images. Third, a team
provides a domain for collective communication.

When a CAF program is launched, all process im-
ages are initially part of a pre-defined team known as
team_world. New teams may be constructed from
an existing team by using the collective team_split
operation shown in Figure 1. This operation was inspired
by the functionality of MPI’s MPI_Comm_split [6].
As with MPI_Comm_split, each process image in-
voking team_split on an existing team provides a
positive integer color (or color_undefined) and
a key. Images that supply the same positive value for
color will be assigned to the same new team. If an
image provides the value color_undefined, it will
not be assigned a new subteam. Members of a subteam
result are ordered by the supplied key; if two members
of the existing team supply the same color and key, their
rank in the new team will be ordered by their rank in
existing_team.

As is well understood, through judicious choice of
color and key, one can use team_split to create a
new team in which the participating process images are
simply a permutation of the images in the existing team,

rea l , a l l o c a t a b l e : : x (: , :) [∗] ! 2D a r r a y
rea l , a l l o c a t a b l e : : z [∗]
team : : s u b s e t
i n t e g e r : : c o l o r , r ank

c o l o r = f l o o r ((2∗ team rank (team world))
/ t eam s ize (team world))

! s p l i t i n t o two s u b s e t s :
! t o p and bo t tom h a l f o f team world
t e a m s p l i t (team world , c o l o r , &

team rank (team world) , s u b s e t)

! each image a l l o c a t e s a s i n g l e t o n f o r z
a l l o c a t e (z [@team world])

! members o f t h e two s u b s e t teams
! i n d e p e n d e n t l y a l l o c a t e t h e i r own c o a r r a y x
a l l o c a t e (x (0 : n , 0 : n) [@ s u b s e t])

r ank = team rank (s u b s e t)
i f (r ank > 0) then

x (: , n) [r ank − 1 @ s u b s e t] = x (: , 0)
e n d i f
i f (r ank < t eam s ize (s u b s e t) − 1) then

with team s u b s e t
x (: , 0) [r ank + 1] = x (: , n)

end with team
e n d i f

Fig. 2. Allocating and accessing coarrays on processor subsets.

or to create one or more subset teams. One might create
a new team that is a permutation of an existing team
to order process images within the new team so that
adjacent images are closer in the physical topology of
the target platform on which the program is executing.

A new idea here is the ability to bind team pairs
by providing an optional result_color argument
to team_split. In the typical case, the new team
returned would be based on the color argument. How-
ever, if one wants to enable a pair of teams to interact,
one can construct a team that functions like an MPI
intercommunicator by supplying a result color different
from color. For instance, one could use one team
split operation to create atmosphere and ocean teams.
Then, in a second team split operation with the same
color and ranks supplied to the initial split, images
could specify the other team’s result color. This would
provide members of the ocean team with a team that
would enable them to interact with members of the
atmosphere team; likewise, members of the atmosphere
team would receive a team that enables them to interact
with members of the ocean team.

a) Data allocation: Both Numrich and Reid’s original
CAF and the Fortran 2008 working draft require that
coarrays be allocated across all process images. For
applications where processor subsets need to work in-
dependently, it is unreasonable to ask that all processors
be involved if a subset needs to dynamically allocate

some shared data. Second, if one writes a parallel library
that might be used concurrently by different processor
subsets, it is unreasonable to require that all shared data
allocated by the library (a) be known to the library’s
callers or (b) be associated with global variables within
the library package. These observations led to our design,
which supports dynamic allocation of coarrays on pro-
cessor subsets, and dynamic allocation of coarrays into
local variables. Unlike prior proposals, we only allow
one to specify a single codimension for a coarray in
its declaration. Rather than supporting multidimensional
coarrays, we support more general structured indexing
of process images through topologies associated with
teams, which we describe in the next section.

Although coarrays are associated with process im-
ages, each coarray allocation or indexing operation is
explicitly or implicitly associated with a team. When
one allocates or indexes a coarray, one may specify
an explicit team. If no team is specified explicitly, the
default team is used. A with team statement (inspired
by the with statement in PASCAL) is a block structured
construct for changing the default team within its scope.
If a coarray allocation or access is not enclosed in the
scope of a with statement, team_world is used as
the default team. When one or more coarrays are allo-
cated on images associated with a given team, a barrier
synchronization is performed on the team to ensure that
all coarrays have been allocated and are ready for use.
Indexing with a codimension is done with a relative rank
with respect to an explicit or default team. Figure 2
shows examples of allocating coarray variables across
different teams, using team_size and team_rank
primitives to interrogate the team characteristics, and
indexing coarrays with respect to the team subset,
specified both explicitly (using @) and implicitly (using
a with).

IV. Topologies
Fortran 2008 and earlier flavors of CAF only pro-

vided multidimensional coarrays as a form of structured
namespace for interprocessor communication. Any other
structured organization for indexing process images must
be implemented in user code using arithmetic on image
IDs or using index arrays. In CAF 2.0, we associate
a logical topology with a team to provide a structured
namespace for intra-team communication that is relative
to members’ ranks in the team, not to their absolute
image ID. Like MPI, CAF 2.0 supports two types of
topologies: Cartesian and graph.

For CAF 2.0 we have settled upon a one to one
association between teams and topologies. Although it
may seem desirable to change the topology for a team,
we note that calling team_split with a constant for
the color parameter allows one to create a clone of the

team that has not yet been associated with any topology;
a different topology can be used in conjunction with a
team’s clone.

A. Topology API

To associate a topology with a team, one invokes
topology_bind, which has parameters for the team
and the topology to be associated, and returns an error
if a topology has already been associated with the
team. Similarly, topology_get extracts the topology
associated with a team, or returns an error if there is
none.

1) Graph topology

Any topology can be expressed as a graph G =
(V,E). To create a graph topology in CAF 2.0, one
simply calls topology_graph(n, c), where n is the
number of nodes in the graph, and c is the number of
edge classes. For an undirected graph, one might use a
single edge class: neighbors. For a directed graph, one
could use two edge classes: successors and predecessors.
Additional flavors of edge classes could be used to
distinguish edges within or between processor nodes.
Our general interface leaves it to the imagination of
the user. To populate edge classes in graph g, one
may call graph_neighbor_add(g, e, n, nv)
to add one or more image neighbors (nv can be a
scalar or a vector value) to edge class e for image n.
The operation, graph_neighbor_delete(g, e,
n, nv) can be used in the course of updating g’s edges.

To index a scalar coarray f using a graph topol-
ogy g associated with a team t, one uses the syntax
f[(e,i,k)@t]. The tuple (e, i, k) references the kth

neighbor of image i in edge class e in the topology bound
to t. If the team t is implicit (e.g., inherited from a
with statement or team_world), the parenthesis of
the tuple may be omitted for convenience, simplifying
the syntax to f[e,i,k]. One can use the intrinsic
graph_neighbors(g, e,n) to determine the num-
ber of image n’s neighbors in edge class e in graph g.

2) Cartesian topology

In a sense, Cartesian topologies are just a subset
of general graph topologies; however, they are com-
mon enough to merit explicit treatment and custom
support. To define a Cartesian topology, one calls
topology_cartesian, which takes as parameters
the extent of each dimension. As toroidal topologies are
common for periodic boundary conditions, a negative
extent for a dimension indicates that that the topology
of the dimension is circular.

Accessing a node in a Cartesian topology can be
done by specifying a comma-separated tuple of indices
(d1, d2, d3, ..., dn) where one would otherwise specify an
image rank, e.g. my data(3)[(x+1, y+1)@team grid].

allocate(type spec :: allocation list,
STAT=stat var,
ERR MSG=emsg var,
SOURCE=src expr,
SHARED=is shared)

type_spec is an intrinsic or derived type*
stat_var is a scalar integer variable*
emsg_var is a scalar character variable*
src_expr is a scalar character variable*
is_shared is a scalar logical variable†

* Fortran 2003 feature.
† Proposed Coarray Fortran extension.

Fig. 3. The allocate statement.

As with graph topologies, if the team is implicit, one may
omit the tuple’s parenthesis; in this way, we support syn-
tax as simple as multidimensional coarrays, although our
indexing support is more general in that any dimension
of the Cartesian topology may be circular for periodic
boundary conditions.

It is also highly desirable to support relative indexing
within a topology. We do this by prepending a backslash
to the dimension or tuple that is relative: foo[\(3,−4)]
specifies an offset of (+3,−4) from the current image’s
position in the topology, but foo[3, \− 4] is absolute in
the first dimension and an offset of −4 in the second.

V. allocate statement
Executing an allocate statement associates stor-

age with a pointer or allocatable. Figure 3 shows the
components of an allocate statement. For CAF 2.0
we introduce a new optional argument SHARED, which
indicates whether the target object should be allocated in
private memory of the image, or in shared memory co-
located with the image. Data accessible from coarrays
must be allocated in the shared segment. The shared
specifier is necessary because when data is allocated for
a linked shared data structure in a parallel program, one
typically allocates and initializes an object before linking
it into a shared structure. Only as an object is linked does
it become clear that it should be shared.

VI. Pointers
As Coarray Fortran was defined in 1998, pointer

components were allowed within a coarray of a user-
defined type. It was legal to remotely dereference a
pointer component within a coarray. Given a user-defined
type GRAPH with a pointer component edgelist(:)
and a coarray g of type GRAPH, on image q could
execute a remote access g[p]%edgelist(i), which
would dereference the remote pointer edgelist on
image p. The pointer component edgelist could only

be associated with data on one’s local image. This style
of pointer enables one to allocate and access shared data
of size that differs among process images. However, this
style of pointer is insufficient for remotely manipulating
linked data structures.

Consider a distributed hash table implemented using
bucket chains. One might want to count the entries in a
remote bucket list by writing a loop like the following:

i t em = t a b l e [p]%head
c o u n t = 0
do

i f (. not . a s s o c i a t e d (i t em)) e x i t
c o u n t = c o u n t + 1
i t em => i t em%n e x t

enddo

With the limited pointers originally proposed for CAF,
it would not be possible to write such a loop because
item would need to point to remote data.

To support construction and manipulation of linked
distributed data structures, we propose the attribute
copointer to declare a pointer that one can asso-
ciate with shared data that may be remote. To ensure
that accesses to remote data are textually identifiable,
we propose that one add an empty bracket pair when
dereferencing a remote copointer . We propose the
intrinsic imageof(p) to determine the target image
for a copointer. A typical use of imageof would
be to determine whether a copointer is associated with
data on the local image; if so, one can drop the empty
bracket pair and access the pointer target locally more
efficiently. Figure 4 shows examples of how one may
associate, use, and inspect a copointer.

VII. Synchronization
A. Mutual exclusion

Based on our feedback [5], locks were added to the
most recent working draft of Fortran 2008 to support mu-
tual exclusion. We further support deadlock-free multi-
lock synchronization by allowing the programmer to
transparently acquire a set of locks as a single logical
operation.

CAF 2.0 provides three language constructs for mutual
exclusion.

1) Lock. This is the standard mutual exclusion state
variable; lock and unlock statements acquire
and release it, respectively.

2) Lockset. Locksets foster safety in multi-lock oper-
ation by performing acquires of component locks
in a globally-defined canonical order.

3) Critical section. Critical sections in CAF 2.0 are
simply a block-structured construct for acquiring
and releasing a lock or lockset, either of which
may be dynamically allocated.

i n t e g e r : : wrank , wsize , a (: , :) [∗]
i n t e g e r , c o p o i n t e r : : x (: , :) [∗]

a l l o c a t e (a (1 : 2 0 , 1 : 3 0) [@ team world]
wrank = team rank (team world)
ws ize = t eam s ize (team world)

! a s s o c i a t e c o p o i n t e r x w i t h a
! remote s e c t i o n o f a c o a r r a y
x => a (4 : 2 0 , 2 : 2 5) [mod (wrank + 1 , ws ize)]

! imageo f i n t r i n s i c r e t u r n s t h e t a r g e t
! image f o r x as a rank i n team world
prank = imageof (x)

i f (p rank . eq . wrank) then
! up da t e a l o c a t i o n on t h e l o c a l image
! (unchecked) t h r o u g h t h e c o p o i n t e r x

x (7 , 9) = 4
e l s e

! up da t e a l o c a t i o n on a remote image
! t h r o u g h t h e c o p o i n t e r x

x (7 , 9) [] = 4
e n d i f

Fig. 4. Using a copointer.

Creating a lock or lockset is not a collective operation;
neither is acquiring a lock, lockset, or critical section.
To associate a lockset with specified locks, one uses the
lockset_create statement as shown in Figure 5.

Figure 5 shows that lockset ls can be acquired by
image 1 if and only if all of locks l1, l2, and l3 are
released (or not yet acquired) by images 2, 3, and 4
respectively. This example shows the advantages of using
locksets: convenience, efficiency and deadlock-freedom.

B. Split-phase barriers

Split-phase barriers enable one to overlap communi-
cation with computation. Split-phase barriers comprise
two functions: barrier_notify, a signal that the
image has completed all work upon which other images
depend following the barrier; and barrier_wait, a
query awaiting all other images’ completion of at least
the notify portion of the barrier, implicitly proclaiming
that the current image has completed all work before
the barrier. Split-phase barriers can operate on processor
subsets. Thus, multiple split-phase barriers can be simul-
taneously active – even for the same image – without
conflict [5].

The syntax of our split-phase barrier is as follows:

b a r r i e r n o t i f y ([team])
b a r r i e r w a i t ([team])

If no team is specified, the current default team is used
(see the with team construct in §III).

type (Lock Type) : : l1 , l2 , l 3
type (Lockse t Type) : : l s
l s = l o c k s e t c r e a t e (/ l1 , l2 , l 3 /)

! . . . image 1 ! . . . image 2 ! . . . image 3 ! . . . image 4
l o c k s e t (l s) l o ck (l 1) l o ck (l 2) c r i t i c a l (l 3)

. . . ! c r i t i c a l r e g i o n
u n l o c k s e t (l s) l o ck (l 2) unlock (l 2) end c r i t i c a l
.

unlock (l 2)
unlock (l 1)

Fig. 5. Example of using lock, lockset, and critical. In this example, image 4’s use of the critical construct simplifies programming and
ensures that l3 is unlocked.

C. Events

Because costly group communication is not always
necessary to support the coordination needs of appli-
cations, we envision point-to-point synchronization via
events. At the most basic level, an event is a shared
counter object that supports two operations: an atomic
increment (a notify operation), and spinning until
a particular count is reached (an await operation).
Images may allocate coarrays of events as their needs
demand. Remote update via event_notify and lo-
cal spin operations using event_wait are all that is
needed to effect safe one-way synchronization between
pairs of images. Unlike Fortran 2008’s sync images,
events offer a safe synchronization space: libraries can
allocate their own events that are distinct from events
used in a user’s code.

VIII. Collective communication
Collective subroutines are not new in CAF 2.0; they

were part of the 2007 draft of Fortran 2008, which also
includes collective team reduction and some pre-defined
collective subroutines such as co_sum, co_maxval,
co_minval, and co_product. However, the emerg-
ing Fortran 2008 standard does not include these features
and even though collective operations are widely used in
parallel applications. Built-in collective operations are
likely to provide better performance and portability if
they are implemented as part of a language runtime
rather than having users roll their own.

We propose the collective statements shown in Table I
for CAF. These operations inspired by MPI’s collectives.
All collective statements require a local data variable
source (var_source), a target Coarray Fortran vari-
able (var_dest) and optionally the team where all im-
age members will participate. If a team is not explicitly
specified, then the team specified in an enclosing with
statement or team_world will be used.

The co_reduce function collectively reduces (local)
variables var_src within team team into a speci-
fied target coarray var_dest in image image_dest.
The reduction operation type_op can be one of the

predefined operations such as co_sum for summation,
co_max for finding the maximum value, co_min
for finding the minimum value and co_prod for
product multiplication. The only difference between
co_reduce and co_allreduce is that the former
will store the result in a coarray in the target image
root_rank, while the latter propagates the results to
all images within the team team.

See Reid and Numrich [8] for a further discussion
about collectives.

IX. Memory consistency models
Although a strict consistency memory model is helpful

to ensure correctness of the program, it can preclude
some optimizations for program performance. Program-
mers and compilers need the flexibility to effect relaxed
instruction ordering for regions of code where overall
system performance is the paramount concern.

Our vision for Coarray Fortran supports three memory
models that may be selected for program regions via
compiler directives:
!$caf consistency(strict).The strict consis-
tency model enforces sequential consistency for coarray
communication. Memory operations may only execute
after previous ones complete, and all updates become
visible immediately. This is the default model.
!$caf consistency(relaxed). Under the re-
laxed consistency model, memory get and put operations
can be reordered by the compiler and runtime systems;
however, processor consistency is guaranteed: absent
some other intervening write, an image is guaranteed
to read back the last value it has written.
!$caf consistency(none). Unlike the relaxed
model, an image will not necessarily read back the latest
value it has written to a remote node, again assuming
no intervening writes by other images. This can occur,
for example, in complex interconnection networks with
dynamic routing if the read is routed as as to arrive at
the destination image node ahead of the write. From
an implementation perspective, this mode essentially
disables all runtime control over message ordering in

TABLE I
COLLECTIVE STATEMENTS SUPPORTED IN COARRAY FORTRAN 2.0

Statement Description Syntax
co_bcast collectively broadcast a data from an image to

all images in a team
co_bcast(var source, var dest, root rank [, team])

co_gather collect individual data from each image in a
team at one image

co_gather(var source, var dest, root rank [, team])

co_allgather gathers data from all images and distribute it
to all images

co_allgather(var source, var dest [, team])

co_reduce collective reduction, the result is stored to an
image of the team

co_reduce(var source, var dest, root rank, operator [, team])

co_allreduce collective reduction, the result is stored to all
images of the team

co_allreduce(var source, var dest, operator, [, team])

co_scan collective partial reduction (scan), each image
store the result of reduction from its neighbour

co_scan(var source, var dest, [, team])

co_scatter distribute individual data from an image to
each image in a team

co_scatter(var source, var dest, root rank [, team])

co_shift move data from another image at an offset
within a team

co_shift(var source, var dest, image offset [, team])

For most statements For the reduction statements:
typedef::var source local source variable integer::operator
typedef::var dest[*] target Coarray Fortran variable Possible operator: co max,
integer::root rank the target image co min, co sum, co prod
team::team process subset (team_world if not specified)

order to maximize performance; programmers should
only use it in cases where they are sure that it is safe
and high performance is critical.

X. Implementation
Our implementation of Coarray Fortran 2.0 is a work

in progress. Here, we sketch our implementation strat-
egy, which is based on the GASNet communication
library [1]. We use GASNet’s get and put operations
to read and write remote coarray elements. We further
use GASNet’s active message support to invoke oper-
ations on remote nodes. This capability is used during
team formation and to look up information about remote
coarrays so that one can read and write them directly.

A. Team representation

We use a scalable representation of image teams that
is based on the concept of pointer jumping. Each image
in a team of size S has dlog Se levels of pointers to a
successor and a predecessor. For image i, pointers on
level k link i to the representations of team members at
ranks (i + S − 2k) mod S and (i + 2k) mod S.

With this representation, each image has enough infor-
mation to locate an image at any rank. To reach rank j in
a team from rank i in a team of size S, one can obviously
do this in at most log S steps by following a chain of
pointer-jumping links at distances corresponding to the
bits in i ⊕ j. Less obvious is that for rank i to locate
j, one can often follow far fewer links than the number
of one bits i ⊕ j by exploiting the circularity of our
doubly-linked list based representation, and making use
of both forward and backward links (e.g., instead of

using three forward power-of-2 hops to accomplish a
route of distance +7, one can use a forward route of
distance 8 and backward route of distance 1). For a team
of size S, where S is not a power of two, one can also
exploit the fact that (i−j) mod S 6= (j− i) mod S. For
performance, we plan to have images cache information
about how to directly communicate with a fixed modest
number of frequent communication partners within one’s
team.

B. Team formation

Scalable distributed team formation via
team_split can be accomplished by sorting
(color, key, rank) tuples using parallel bitionic sort, left
and right shift operations to determine team boundaries,
along with segmented scans to compute one’s rank
within a team and disseminate the identity of the
first and last members of the team and the team size.
Subteams can be assembled once each image knows its
left and right neighbors at distance one in the circular
order of its subteam, the size of the subteam, and its
rank in the subteam. Our approach enables us to form a
team without using more than O(log2 P) space on any
image; we use this much space as a scratch buffer for
parallel bitonic sort.

C. Collective operations

Our proposed pointer-jumping based representation
for a team contains all of the direct connections neces-
sary to support collective communication within a team.
Blocking Barrier The dissemination barrier algo-
rithm [4] uses all of the direct connections in our pointer-

Fig. 6. Members of a team of size S are linked in dlog Se doubly-
linked circular lists. In list i, 0 ≤ i < dlog Se, a team member at rank
j is linked to team members (j+S−2i) mod S and (j+2i) mod S,
an organization inspired by pointer jumping.

jumping representation for teams. On a team of size S,
it involves dlog Se rounds of communication. In round
i, 0 ≤ i < dlog Se, each image sets a flag on a successor
at distance 2i and spin waits locally.
Broadcast and reductions Tree-based broadcast and
reduction operations naturally map onto direct connec-
tions in our pointer-jumping representation for teams.
For both broadcast and reductions, we use a binomial
tree [11] based communication pattern. Since the linked
lists in our pointer-jumping representation are circular,
they naturally support broadcasts and reductions rooted
at any node. Allreduce maps onto direct connections of
the pointer-jumping representation equally well.

Replication-oblivious reductions (i.e., operations such
as min and max for which repeated incorporation of
a datum would not change the result) could be imple-
mented using a dissemination-based [4] pattern.

D. Locks and events
We support spin-waiting on remote locks and events.

Spin waiting on remote locks or events requires only
a constant number of messages across a machine’s
interconnect. Waiting on a remote lock or event causes
a record indicating the waiting image to be enqueued
on the remote node. At the appropriate time, an active
message will signal the waiting image.

E. Copointers
We represent a copointer as a tuple consisting of the

target image ID and a Fortran 90 pointer. The target
image ID is the image’s rank in team_world. We
initialize a copointer’s Fortran 90 pointer for a section
of a remote coarray by simply copying the dope vector
for the remote coarray to the local image and locally
computing the proper subsection. When accessing re-
mote data through a copointer, the data in the copointer
representation suffices to synthesize a get or put
operation to access a virtual address in the target image.

XI. Summary and future work
We have sketched a new vision of Coarray Fortran and

are actively implementing the features described herein.
CAF 2.0 is a work in progress; many details of syntax

remain to be designed, such as support for user-defined
reduction operations. Nevertheless, the path forward is
clear and our new design is vastly more expressive
than prior coarray extensions. CAF 2.0’s support for
teams consisting of process subsets, coarrays allocated
on processor subsets, dynamic allocation of coarrays,
copointers, collectives on process subsets, and events for
safe pairwise synchronization, represents substantially
richer support for parallelism than the coarray extensions
in Fortran 2008.

Once we have the core of CAF 2.0 operational, we
plan to extend our design with support for remote invo-
cation of special functions that we call cofunctions. The
motivation for cofunctions is latency avoidance. How-
ever, adding cofunctions to CAF leads to multithreaded
images, which increases programming complexity. If one
can spawn a cofunction remotely, one should also admit
spawning cofunctions locally as asynchronous activities.
Once we add cofunctions to the language, we need a way
to determine when cofunction invocations have quiesced.
We plan to use a block structured finish constuct, as
does IBM’s X10 programming language. Once multiple
threads are allowed in images, one interesting question
that arises is how to prioritize execution between threads.
It would seem that the language model should offer some
way to control the priorities of activities. Exploring these
issues is a topic of future work.

References
[1] D. Bonachea. GASNet Specification, v1.1. Technical Report

UCB/CSD-02-1207, U.C. Berkeley, 2002.
[2] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC:

Distributed Shared-Memory Programming. Wiley-Interscience,
2003.

[3] Fortran J3 Committee. Fortran 2008 Working Draft, J3/09-007r1,
March. 25, 2009. http://www.j3-fortran.org/doc/standing/links/
007.pdf.

[4] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for
barrier synchronization. International Journal of Parallel Pro-
gramming, 17(1):1–17, Feb. 1988.

[5] J. Mellor-Crummey, L. Adhianto, and W. N. Scherer III. A
critique of co-array features in Fortran 2008. Fortran Stan-
dards Technical Committee Document J3/08-126, February 2008.
http://www.j3-fortran.org/doc/meeting/183/08-126.pdf.

[6] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Version 1.1. http://www.mpi-forum.org/docs/
mpi-11-html/mpi-report.html, June 1995.

[7] R. W. Numrich and J. Reid. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[8] J. Reid and R. W. Numrich. Co-arrays in the next Fortran
standard. Sci. Program., 15(1):9–26, 2007.

[9] A. Skjellum, N. E. Doss, and P. V. Bangalore. Writing libraries
in MPI. In A. Skjellum and D. S. Reese, editors, Proceedings
of the Scalable Parallel Libraries Conference, pages 166–173.
IEEE Computer Society Press, October 1993.

[10] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The complete reference. MIT Press, Cam-
bridge, MA, 1996.

[11] J. Vuillemin. A data structure for manipulating priority queues.
Commun. ACM, 21(4):309–315, 1978.

