
Towards an Abstraction-Friendly Programming
Model for High Productivity and High

Performance Computing

Chunhua Liao, Daniel J. Quinlan and Thomas Panas

Lawrence Livermore National Laboratory
Livermore, CA 94551

{liao6,quinlan1,panas2}@llnl.gov

General purpose languages, such as C++, permit the construction of various
high level abstractions to hide redundant, low level details and accelerate pro-
gramming productivity. Example abstractions include functions, data structures,
classes, templates and so on. However, the use of abstractions significantly im-
pedes static code analyses and optimizations, including parallelization, applied
to the abstractions’ complex implementations. As a result, there is a common
perception that performance is inversely proportional to the level of abstrac-
tion. On the other hand, programming large scale, possibly heterogeneous high-
performance computing systems is notoriously difficult and programmers are less
likely to abandon the help from high level abstractions when solving real-world,
complex problems. Therefore, the need for programming models balancing both
programming productivity and execution performance has reached a new level
of criticality.

We are exploring a novel abstraction-friendly programming model in order
to support high productivity and high performance computing. We believe that
standard or domain-specific semantics associated with high level abstractions can
be exploited to aid compiler analyses and optimizations, thus helping achieving
high performance without losing high productivity. We encode representative
abstractions and their useful semantics into an abstraction specification file. In
the meantime, an accessible, source-to-source compiler infrastructure (the ROSE
compiler) is used to facilitate recognizing high level abstractions and utilizing
their semantics for more optimization opportunities. Our initial work has shown
that recognizing abstractions and knowing their semantics within a compiler can
dramatically extend the applicability of existing optimizations, including auto-
matic parallelization. Moreover, a new set of optimizations have become possible
within an abstraction-friendly and semantics-aware programming model.

In the future, we will apply our programming model to more large scale
applications. In particular, we plan to classify and formalize more high level ab-
stractions and semantics which are relevant to high performance computing. We
will also investigate better ways to allow language designers, library developers
and programmers to communicate abstraction and semantics information with
each other.


