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DISC at SLAC
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Analytics Driven

• Ingest
C t ll d di t bl it– Controlled, predictable, write-once

• Analyses
– Ad-hoc, unpredictable, read-many, p , y
– Limiting factor: software and hardware
– Science – industry: many similaritiesy y
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Need to be Flexible, Distributed

• Grow incremental
S l t– Scale out

• Uncertainty, highly varying load
– System has to adapt, don’t want to overbuild

• Large monolithic systems are hard g y
to make failure proof
– Complexity in H/W vs in S/Wp y
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Sometimes Must be Distributed

• Large projects 
= distributed funding= distributed funding 

= distributed computing
A l i t f i• Analysis centers of any sizes
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Spindles

• 1 PB @50MB/sec = 230 days
1 PB i 1h @50MB/ /di k 6K di k• 1 PB in 1h @50MB/sec/disk  6K disks 

• I/O driven, not capacity driven
• Can trade some I/O for CPUCan trade some I/O for CPU 

– Compute on the fly
Compress (so so for science data)– Compress (so-so for science data)
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Nodes

• Too many disks/node 
= memory bottleneck= memory bottleneck

• Clusters measured in 100s, 1,000s
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Failures are Routine

• Accept it and deal with it
C ’ di i• Can’t disrupt services

• Must transparently recover
Avoid shared resources, 

central points of failuresp
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Other Requirements Imposed by Peta-scale

• Pre-execution job cost estimates
• Approx results• Approx results

– to speed up exploration
to skip failed nodes (if acceptable)– to skip failed nodes (if acceptable)

• Job pause/restart
S lf t• Self management
– auto-load balance, auto-fail over, auto-QA

R l d i t• Relaxed consistency
• Provenance tracking
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Order and Adjacency

• Time series

• Spatial locality, neighbors
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Multi-D

• Typically few dimensions
S ti l (2 3)– Spatial (2-3)

– Temporal
– Sometimes frequency

• Typically one clustering dimension
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Uncertainty

• Measurements
R l• Results
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Pushing Computation to Data

• Moving data is expensive

• Happens at every level
– Send query to closest centerSend query to closest center
– Process query on the server that holds data
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Improving I/O Efficiency

• Limit accessed data
G t l d d t t– Generate commonly accessed data sets. 
Cons: delays and restricts

D d i I/O• De-randomize I/O
– Copy and re-cluster pieces accessed together

• Trade I/O for CPU
• Combine I/O

– Shared scans
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Full Data-Set Scans

• Sequential access
N d f i d• No need for indexes

• Simple model
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Architectures in Practice

• Off-the-shelf RDBMS based
B W lM t N ki B B SDSS– eBay, WalMart, Nokia, BaBar, SDSS, 

PanSTARRS, LSST
C t ft fl t fil t d t• Custom software, flat files + metadata 
in RDBMS
– All HEP, most geo, many in bio, ... 

• Custom software, custom format
– Google, Yahoo!, Facebook, ...
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Distributed Architectures in Practice

• Task parallelization models
I d d t t k– Independent tasks

– Simple (map/reduce)
– Complex, full-featured (workflows, 

shared-nothing MPP DBMS)
• Virtually everybody with PBs is distributed

– Next stop: cloud
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Convergence

• DBMS vendors
Rush towards shared nothing*– Rush towards shared-nothing

• Teradata had it, IBM: DB2 Parallel Edition, 
Oracle: Exadata, Microsoft: Madison

• Emergence of shared-nothing MPP DBMS startups
– Adding map/reduce paradigm support

A t D t G l T d t N t V ti• AsterData, Greenplum, Teradata, Netezza, Vertica

• Map/Reduce
R h t dd db i h f t– Rush to add db-ish features 
(schemas, indexes, more operators)
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Spatial Correlations Needed by Many

• Science: 
all geo (solar systems interplanetary space solid earth– all geo (solar systems, interplanetary space, solid earth 
science, atmosphere, ocean, subsurface, water 
networks, seismic, oil/gas exploration research...)

– Astronomy
– bio (e.g., sequences, microscopic and medical imaging)

I d i• Industries
– oil/gas

b i ( i i l d t )– web companies (mining log data)
– wall street
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SciDB

• Open source DBMS for scientific research
• Shared nothing MPP DBMS• Shared-nothing MPP DBMS
• Unique features

A– Arrays
• natively supported arrays (basic, enhanced: ragged, 

nested...), and array operators), y p
– Overlapping partitions
– Basic uncertainty supporty pp
– Executing user defined functions 

in parallel on independent data
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SciDB – Good for…

• Managing / analyzing gridded / n-d data sets
S h i– Such as images

• Complex analyses on large data sets
– Time series
– Spatial correlations
– Matrix operations

• Designed to scale to 1,000s of nodesg ,
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Summary

• Data intensive computing needs balanced, 
shared-nothing distributed systemsshared-nothing, distributed systems
– It’s all about disk I/O, and memory bandwidth
– Computation centers insufficientComputation centers insufficient

• Big-data users build custom software
– solution providers rapidly catching up– solution providers rapidly catching up

• Issues with complex spatial correlations 
not solvednot solved

• SciDB – new open source DBMS 
for scientific analytics
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Related Links

• http://scidb.org
h // f l f d d / ldb0• http://www-conf.slac.stanford.edu/xldb07

• http://www-conf.slac.stanford.edu/xldb08
• http://www-conf.slac.stanford.edu/xldb09
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