Data-Intensive Scientific Computing: Requirements & Solutions

Jacek Becla SLAC National Accelerator Laboratory

Los Alamos Computer Science Symposium 10/13/2009

Outline

- Data intensive computing realm
- Complexity of scientific data sets
- Current trends and existing solutions
- Summary

DISC at SLAC

Large Synoptic Survey Telescope

ØSciDB

Analytics Driven

• Ingest

- Controlled, predictable, write-once

- Analyses
 - Ad-hoc, unpredictable, read-many
 - Limiting factor: software and hardware
 - Science industry: many similarities

Need to be Flexible, Distributed

- Grow incremental
 - Scale out
- Uncertainty, highly varying load
 - System has to adapt, don't want to overbuild
- Large monolithic systems are hard to make failure proof
 - Complexity in H/W vs in S/W

Sometimes <u>Must</u> be Distributed

- Large projects

 distributed funding
 distributed computing
- Analysis centers of any sizes

Spindles

- 1 PB @50MB/sec = 230 days
- 1 PB in 1h @50MB/sec/disk \rightarrow 6K disks
- I/O driven, not capacity driven
- Can trade some I/O for CPU
 - Compute on the fly
 - Compress (so-so for science data)

Nodes

- Too many disks/node
 = memory bottleneck
- Clusters measured in 100s, 1,000s

Failures are Routine

- Accept it and deal with it
- Can't disrupt services
- Must transparently recover
- →Avoid shared resources, central points of failures

Other Requirements Imposed by Peta-scale

- Pre-execution job cost estimates
- Approx results
 - to speed up exploration
 - to skip failed nodes (if acceptable)
- Job pause/restart
- Self management
 - auto-load balance, auto-fail over, auto-QA
- Relaxed consistency
- Provenance tracking

Outline

- Data intensive computing realm
- <u>Complexity of scientific data sets</u>
- Current trends and existing solutions
- Summary

Order and Adjacency

- Time series
- Spatial locality, neighbors

Multi-D

- Typically few dimensions
 - Spatial (2-3)
 - Temporal
 - Sometimes frequency
- Typically one clustering dimension

Uncertainty

- Measurements
- Results

Outline

- Data intensive computing realm
- Complexity of scientific data sets
- <u>Current trends and existing solutions</u>
- Summary

Pushing Computation to Data

• Moving data is expensive

- Happens at every level
 - Send query to closest center
 - Process query on the server that holds data

Improving I/O Efficiency

- Limit accessed data
 - Generate commonly accessed data sets.
 Cons: delays and restricts
- De-randomize I/O
 - Copy and re-cluster pieces accessed together
- Trade I/O for CPU
- Combine I/O
 - Shared scans

Full Data-Set Scans

- Sequential access
- No need for indexes
- Simple model

Architectures in Practice

- Off-the-shelf RDBMS based
 - eBay, WalMart, Nokia, BaBar, SDSS, PanSTARRS, LSST
- Custom software, flat files + metadata in RDBMS
 - All HEP, most geo, many in bio, ...
- Custom software, custom format
 - Google, Yahoo!, Facebook, ...

Distributed Architectures in Practice

- Task parallelization models
 - Independent tasks
 - Simple (map/reduce)
 - Complex, full-featured (workflows, shared-nothing MPP DBMS)
- Virtually everybody with PBs is distributed
 - Next stop: cloud

Convergence

- DBMS vendors
 - Rush towards shared-nothing*
 - Teradata had it, IBM: DB2 Parallel Edition, Oracle: Exadata, Microsoft: Madison
 - Emergence of shared-nothing MPP DBMS startups
 - Adding map/reduce paradigm support
 - AsterData, Greenplum, Teradata, Netezza, Vertica
- Map/Reduce
 - Rush to add db-ish features (schemas, indexes, more operators)

*De facto, shared-nothing internally implements map/reduce

Spatial Correlations Needed by Many

- Science:
 - all geo (solar systems, interplanetary space, solid earth science, atmosphere, ocean, subsurface, water networks, seismic, oil/gas exploration research...)
 - Astronomy
 - bio (e.g., sequences, microscopic and medical imaging)
- Industries
 - oil/gas
 - web companies (mining log data)
 - wall street

But no good solution

SciDB

- Open source DBMS for scientific research
- Shared-nothing MPP DBMS
- Unique features
 - Arrays
 - natively supported arrays (basic, enhanced: ragged, nested...), and array operators
 - Overlapping partitions
 - Basic uncertainty support
 - Executing user defined functions in parallel on independent data

SciDB – Good for...

- Managing / analyzing gridded / n-d data sets
 Such as images
- Complex analyses on large data sets
 - Time series
 - Spatial correlations
 - Matrix operations
- Designed to scale to 1,000s of nodes

Summary

- Data intensive computing needs <u>balanced</u>, shared-nothing, distributed systems
 - It's all about disk I/O, and memory bandwidth
 - Computation centers insufficient
- Big-data users build custom software
 solution providers rapidly catching up
- Issues with complex spatial correlations not solved
- SciDB new open source DBMS for scientific analytics

Related Links

- http://scidb.org
- http://www-conf.slac.stanford.edu/xldb07
- http://www-conf.slac.stanford.edu/xldb08
- http://www-conf.slac.stanford.edu/xldb09

