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Performance Analysis Goals

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

dynamic loading or static binaries
SPMD parallel codes with threaded node programs
batch jobs

— production executions

o Effective performance analysis
— pinpoint and explain problems

intuitive enough for scientists and engineers
detailed enough for compiler writers

— yield actionable results

e Scalable to petascale systems




Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks

* Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress




State of the Art: Call Path Profiling

Measure and attribute costs in their calling context

e Sample timer or hardware counter overflows

e Gather calling context using stack unwinding

Call path sample Calling Context Tree (CCT)

@ return address
‘ return address

‘ return address

‘ instruction pointer ‘

O

- z/:\t

Overhead proportional to sampling frequency...
...not call frequency




Unwinding Fully-optimized Parallel Code

Unwinding based on demand-driven binary analysis

e |dentify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time
e Compute unwind recipes for a procedure

— scan the procedure’s object code, tracking the locations of
« caller’s program counter
« caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
* Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
e Results

— almost flawless unwinding
— overheads of < 2% for sampling frequencies of 200/s

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and
attribution of program performance. PLDI 2009, Dublin, Ireland, Distinguished Paper Award.




Detailed Attrlbutlon MOAB Mesh Benchmark

calhng context!

';imbperf_iMesh.cpp &3 "% TypeSequenceManager.hpp &3 'ﬂstl_tree.h

22 * Define less-than comparison for EntitySequence pointers as a comparison
23 * of the entity handles in the pointed-to EntitySequences. m
24 */
25 class SequenceCompare { [
26 public: bool operator()( const EntitySequence* a,
27 { return a->end_handle() < b->start_handle(); } C.OS.tS for
28__1; | e inlined procedures
e loops
‘ '\. Callers View 'r;, Flat View p

[ ® function calls in full context

| & 1\(Sli‘txJHﬁl’H

Scope | PAPI_L1_DCM (I) ¥ PAPI_TOT_CYC () F

¥ main 8.63e+08 100 % 1.13e+11 100 S &
¥ [ testB(void*, int, double const*, int const*) 8.35e+08 96.7%  1.10e+ll 97.6%ml
¥linlined from mbperf_iMesh.c 6.8le+08 78.9% 0.98e+1l 86.5%
¥| loop at mbperf=iMesh.cpp: 280—313‘ 3.43e+08 39.8% 3.37e+10 29.9%
¥ [P imesh_getvtxarrcoords_ 3.20e+08 37.1% | 2.18e+10 19.3%
¥ [ MBCore:get_coords(unsigned long const*, int, double*) c¢ 3.20e+08 37.1%  2.l6e+10 19.1%
VIIooE at MBCore,cge: 681-693| 3.20e+08 37.1% | 2.1l6e+10 19.1%
v[lnlined from stl_tree.h: 472 | 2.04e+08 23.7% 9.38e+09 8.3%
v 2.04e+08 23.6% 9.37e+09 £.3%
¥ |inlined from TypeSequenceManager.hpp: 27 JL-78e+08 20.6% 8.56e+09 7.6% 1
TypeSequenceManager.hpp: 27 1.78e+08 20.6% 8.56e+09 7.6%

Q 4>




Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks

* Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress




The Problem of Scaling
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Pinpointing and Quantifying Scalability Bottlenecks
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Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

To

90

plely 2haubop

fm
Magnetic
Rayleigh-Taylor

Nova outbursts on white dwarfs

Cellular detonation

University of Chicago FLASH
white dwarf collapse
Blue Gene/P

8192 vs. 256 processors
weak

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability
Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 10




S3D:Multicore Losses at the Procedure Level

hpcviewer: [Profile Name]

"¢ getrates.f "¢ rhsf.f90 &3 | "% diffflux_gen_uj.f

lsubroutine rhsf( q, rhs )

! Changes

! Ramanan Sankaran - 01/04/05

! 1. Diffusive fluxes are computed without having to convert units.

6! Ignore older comments about conversion to CGS units.

‘! This saves a lot of flops.
! 2. Mixavg and Lewis transport modules have been maede interchengeable
! by adding dummy arguments in both.

Author: James Sutherland

!
12 !} Date: April, 2082
13
i | This routine calculates the time rate of change for the 1
15 ! momentum, continuity, energy, and species equations.
1A )
¢ Calling Context View | 5 Callers View | ™% Flat View =0

|2 &2 3 |6/foll

Scope 1-core (ms) () l-core (ms) (E) | 8-core(1l) (ms) (1)

Experiment Aggregate Metrics 1.11e08 100 % 1.11e08 100 % 1.88e¢08 100%
rhsf 1.07e08 96.5% 6.60e06 5.9% 1.77e08 94.1%
diffflux_proc_looptool 2.86e06 2.6% 2.86e06 2.6% £.12e06 4.3%
integrate_erk_jstage_|t 1.09e08 98.1% 1.25e06 1.1% 1.84e08 97.9%
GET_MASS_FRAC.in.VARIABLES_M1.49006 1.3% 1.49006 1.3% 6.08006 3.2%
ratx 1.01e07 9.1% 1.00e07 9.0% 4.4l1e07 23.5%
qssa 3.52e06 3.2% 3.52e06 3.2% 5.71e06 3.0%
ratt 3.26e07 29.2% |1.48e07 13.3% | 4.38e07 23.3%
CALC_INV_AVG_MOL WT.in.THER9.70e05 0.9% 9.70e05 0.9% 2.68e06 1.4%
computeheatflux_looptool 1.46006 1.3% 1.46e06 1.3% 2.88¢06 1.5%
rdwdot 3.09e06 2.8% 3.09e06 2.8% 4.33e06 2.3%

65e07

.12e06
.94e06
.08e06
.40e07
.71el6
.66e07
.68e06
.88e06
.33e06

core(l) (ms) (b)...
1.88e08 100 %

8.8%
4.3%
3.2%
3.2%
7.4%
3.0%
8.8%
1.4%
1.5%
2.3%

Multicore Loss ¥
7.64e07 100%
13.0%

6.9%
6.1%
6.0%
5.2%
2.9%
2.3%
2.2%
1.8%
1.6%

>
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S3D: Multicore Losses at the Loop Level

66 hpcviewer: [Profile Name] (-
"¢ getrates.f "¢ rhsf.f0 " diffflux_gen_uj.f &3 =0
193 *ge. 2) then —~

194 1__ujUpper3d = (3 -1 +1)/3*3+1-1

195 dom=1,1__ujUpper3d, 3

196 don=1, n_spec - 1

197 do 1¢__2 - 1, nz

198 do 1t__1 = 1, ny

199 do 1t__9@ = 1, nx

200 diffflux(1t__0, 1t__1, 1t__2, n, m) = -ds_mixavg

201 *(Le__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m) + y

202 *s(1t_.0, 1t__1, 1t__2, n) * grad_mixmw(1lt__0, 1t__1, 1t__2, m))

203 diffflux(l¢__0, 1t__1, 1t__2, n_spec, m) = difff

204 *lux(lt__0, 1t__1, 1t__2, n_spec, m) - diffflux(1t__0, 1t__1, 1t__2 []

205 *. n, m)

206 diffflux(lt__9, 1t__1, 1t__2, n, m+ 1) = -ds_m b

207 *xavg(1t__@, 1t__1, 1t__2, n) * (grad_ys(lt__9, 1t__1, 1t__2, n, m

AR P 1) a wel1E A 1F 1 0% 2 A Y arad mivew(1lE A TF 1 Nk 2

"¢ Calling Context Viewl“i Callers Vlewl"'i_ Flat View =0

284 1|6
Scope 1-core (ms) (1) l-core (ms) (E) | 8-core(l) (ms) () 8-core(l) (ms) (B)... Multicore Loss ¥
loop at diffflux_gen_uj.f: 197-2232.86e06 2.6% 2.86e06 2.6% B.12e06 4.3% 8.12e06 4.3%| 5.27e06 s.sso
loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1%
loop at variables_m.f90: 88-99 1.49€06 1.3% 1.49e06 1.3% 6.08e06 3.2% 6.08e06 3.2%| 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2% 6.49e06 3.5% 3.72e06 2.0%| 2.4le06 3.1%
loop at rhsf.f90: 538-544 3.35e06 3.0% 1.45e06 1.3% 7.06006 3.8% 31.82¢06 2.0% 2.36e06 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% 1.47e06 1.3%| 5.86e06 3.1% 3.42e06 1.8%| 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0.7% £.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2% 1.48e06 1.9%
loop at heatflux_It_gen.f: 5-132 1.46e06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.4le06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0%| 1.20e06 1.6%
loop at getrates.f: 504-505 8.00006 7.2% 8.00006 7.2% B©.74006 4.7% 8.74606 4.7%| 7.35005 1.0%
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e08 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3
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Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks
 Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress
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Cilk: A Multithreaded Language

cilk int fib(n) {

if (n < 2) return n;
else { @

}
}

int x, y;

x = spawn fib(n-1) ; ° °

y = spawn fib(n-2) ;

sync;

return/ (x + y); ° ° ° @

asynchronouls calls
create logical tasks that ’ ’ ..quickly create significant

only block ata sync...

logical parallelism.

14




Cilk Program Execution using Work Stealing

 Challenge: Mapping logical tasks to compute cores

e Cilk approach:
— lazy thread creation plus work-stealing scheduler
e spawn: a potentially parallel task is available
« an idle thread steals tasks from a random working thread

RS
.“"‘ , "-'\
'Possible Execution: | N
thread 1 begins .”"‘.""""" ~ 0 1
thread 2 steals from 1 o N R '
thread 3 steals from 1 R SR . -

) S\
o . Y4 ¢
L} * \
: " \ 7 \, /
o 4

15




e Consider thread 3:

Wanted: Call Path Profiles of Cilk

.;'r ."lg thread 1
thread 2

thread 3

Work stealing separates
user-level calling contexts in
space and time

| |
— physical call path: | @l

s

| - 1
— logical call path: ,@T’ 0 ‘ l

- - . .
- by

Logical call path profiling: Recover full relationship

between physical and user-level execution "




Effective Performance Analysis

Three Complementary Techniques:

e Recover logical calling contexts in presence of work-stealing

lllllllllllllllllllll

cilk int fib(n) { . s
if (n < 2) {...} ®_:’®
| L 2

else { e T
int x, y;
x = spawn fib(n-1) ; /f
y = spawn fib (n-2);

high parallel overhead from

sync; creating many small tasks

return (x + y):

 Quantify parallel idleness (insufficient parallelism)
* Quantify parallel overhead

o Attribute idleness and overhead to logical contexts
— at the source level

17




Measuring & Attributing Parallel Idleness

* Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts

— insight: attribute idleness to its cause: context of working thread
a thread looks past itself when ‘bad things’ happen to others

* Work stealing-scheduler: one thread per core

— maintain W (# working threads) and | (# idling threads)
slight modifications to work-stealing run time
— atomically incr/decr W when thread exits/enters scheduler
 when a sample event interrupts a working thread
— | = #cores - W
— apportion others’ idleness to me: |/ W

e Example: Dual quad-cores; on a sample, 5 are working:

o o

foreach W +=1 > W=5 idle: drop sample
worker: Z +=3/5 ZI — 3 (it’s in the scheduler!)

18




Parallel Overhead

e Parallel overhead:

— when a thread works on something other than user code
(we classify delays -- e.g., wait time -- as idleness)

* Pinpointing overhead with call path profiling

— impossible, without prior arrangement
« work and overhead are both machine instructions

— insight: have compiler tag instructions as overhead

— quantify samples attributed to instructions that represent ovhd
use post-mortem analysis

19




Top-down Work for Cilk ‘Cholesky’

™ O O hpcviewer: cholesky (dual Barcelona)[--nproc 8 -n 3000 -z 30000] -
e cholesky.cilk &3 | ™% invoke-main.c we cilk.c = 0
650 /* -
651 * Compute Cholesky factorization of A.
652 */ m
652cilk Matrix cholesky(int depth, Matrix a) A
654 { T

"W Calling Context View

«», Callers View

}1, Flat View

13.5% of cilk main’s

total effort was spentin

idleness...

|2 26|
e [ work (all) e
¥ B cilk_main 5.l4e+10 96.2%
v B cholesky 2.64e+10 49.4302.97e+00
¥ [ backsub 1.13e+10 21.1% |1.38e-01
> B backsub 5.83e+09 10.9%|1.29e-01
» B> mul_and_subT [5.45e+09 10.2%|8.58e-03
¥ [P cholesky 0.99e+10 18.6%|2.80e+00
» B cholesky 3.78e+09 7.1%|2.70e+00
> B backsub 3.15e+09 5.9%|8.41le-02
» B> mul_and_subT [3.01e+09 5.6%|1.62e-02
» BY mul_and_subT 5.19e+09 9.7%|2.97e-02
» B> mul_and_subT 2.41e+10 45.1% |8.56e-02
> [ free_matrix 4.56e+08 0.9%|5.92e+00
» B num_nonzeros 1.26e+08 0.2%|1.63e+00

percent idleness

.3%|2.22e-01 26.2% ~

.5% §2.15e-01§25.3%

percent overhead

©

2]

1.08 2.59%9e-02 3.1%

0.9% 2.59e-02 3.1% |||

— 2.97% and 0.215% of
20-3% 1-9 cholesky’s total effort
19-€%1- \was spent in idleness
°-€* 2.2 and overhead.

0.1% 7.4

0.2%

0.6% 7.41le-03 0.9%

42.9%

11.9%

20




Using Parallel Idleness & Overhead

e Total effort = useful work + idleness + overhead

e Enables powerful and precise interpretations

idleness | overhead |interpretation

low low effectively parallel

low high coarsen concurrency granularity
high low refine concurrency granularity
high high switch parallelization strategies

* Normalize w.r.t. total effort to create
— percent idleness or percent overhead

Nathan Tallent, John Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.

21
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Quantifying the impact of lock contention on threaded code
Understanding how computations evolve

Work in progress
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Understanding Lock Contention

 Lock contention => idleness:
— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

 Use “blame-shifting:” shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

e How it works
— consider spin-waiting*
— sample a working thread:
« charge to ‘work’ metric
— sample an idle thread
« accumulate in idleness counter assoc. with lock (atomic add)

— working thread releases a lock
- atomically swap 0 with lock’s idleness counter
« exactly represents contention while that thread held the lock
« unwind the call stack to attribute lock contention to a calling context

*different technique handles blocking 23




Lock contention in MADNESS

578 add(MEMFUN_OBIT(memfunT)& obj,

579 memfunT memfun,

580 const arglT& argl, const arg2T& arg2, const arg3T& arg3, const TaskAttributes& |
581 Future<REMFUTURE(MEMFUN_RETURNT (memfunT))> result;

add(new TaskMemfun<memfunT>(result,obj,memfun,argl,arg?,arg3,attr));

- RS quantum chemistry; MPI + pthreads
e

e
"3 Calling Context View W tr, Flat View
| 56 |5 A A 16 cores; 1 thread/core (4 x Barcelona)
Scope ... %idleness (@ll/E) ¥ idleness (all/E)
Experiment Aggregate Metrics 2.35e+01 100 % |1.57e+09 100 ¢

¥ pthread_spin_unlock 100.0 lock contention
v & madness:Spinlock :unlock() const 2.35e+01 100.0

accounts for 23.5%
of execution time.

1.78e+01 75.6%

1.78e401 75.6%

7.35e+00 31.2%

¥ @ inlined from worldmutex.h: 142
v @imadness: ThreadPool::add(madness::PoolTaskinterface*)
v <3 inlined from worldtask.h: 581
» @ madness:Future<> madness:WorldObject<> task<>(7.35e+00 31.2%

.92e+08 31.2%

4
4 .
v 43 inlined from worldtask.h: 569 4.560400 19.4% |3.0¢ Addlng futures
» ¢ madness:Future<> madness:WorldObject<>:task<>(4.56e+00 19.4% |3.03 to shared global
» &3 inlined from worlddep.h: 68 1.53e+00 6.5% (1.0 work queue.
v 43 inlined from worldtask.h: 570 1.49¢400 £€.3% 9.97e407 6.3%
» @@ madness:Future<> madness:WorldObject<>:task<>(1.49e+00 6.3%|9.97e+07 6.3%
» & inlined from worldtask.h: 558 1.38e+00 5.9% |9.26e+07 5.9%
2.9% |4.49¢407 2.9%

> 48 madness Future<> madncss::WorIdTastucuc;:add<>(ma|5-720-01

ey T ¢ 24
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Understanding Temporal Behavior

Profiling compresses out the temporal dimension
—that’s why serialization is invisible in profiles

What can we do? Trace call path samples

—sketch:
— N times per second, take a call path sample of each thread

— organize the samples for each thread along a time line
— view how the execution evolves left to right
— what do we view?

assign each procedure a color; view execution with a depth slice

Time

2@




Call Path Sample Trace for GTC

Gyrokinetic Toroidal Code (GTC)

e 32 process MPI program
e Each process has a pair of threads managed with OpenMP

Clugn  Comset vem. P,
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Work in Progress

 Analyze call path profiles for 100K+ cores in parallel
— aggregate profile CCTs for different cores to get union CCT
— compute summary statistics (e.g. min, mean, max, std. deviation)

— hypothesis: we can apply our top-down methodology for
analyzing CCTs to assess profile differences

« pinpoint and quantify profile differences at a high level
« drill down using differential analysis of sample profiles

e Develop GUI support for sorting and histogramming profile
values to cope with data from thousands of cores

 Using hardware monitoring capabilities to gain insight into
data access patterns
— identify potential for improving locality and data reuse

* Visualize sampled traces for thousands of cores

29




