Gaining Insight into Parallel Program

Performance Using Sampling

John Mellor-Crummey, Laksono Adhianto,
Mike Fagan, Mark Krentel, Nathan Tallent

Department of Computer Science
Rice University

hpctoolkit.org

Performance Analysis Goals

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

dynamic loading or static binaries
SPMD parallel codes with threaded node programs
batch jobs

— production executions

o Effective performance analysis
— pinpoint and explain problems

intuitive enough for scientists and engineers
detailed enough for compiler writers

— yield actionable results

e Scalable to petascale systems

Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks

* Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress

State of the Art: Call Path Profiling

Measure and attribute costs in their calling context

e Sample timer or hardware counter overflows

e Gather calling context using stack unwinding

Call path sample Calling Context Tree (CCT)

@ return address
‘ return address

‘ return address

‘ instruction pointer ‘

O

- z/:\t

Overhead proportional to sampling frequency...
...not call frequency

Unwinding Fully-optimized Parallel Code

Unwinding based on demand-driven binary analysis

e |dentify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time
e Compute unwind recipes for a procedure

— scan the procedure’s object code, tracking the locations of
« caller’s program counter
« caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
* Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
e Results

— almost flawless unwinding
— overheads of < 2% for sampling frequencies of 200/s

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and
attribution of program performance. PLDI 2009, Dublin, Ireland, Distinguished Paper Award.

Detailed Attrlbutlon MOAB Mesh Benchmark

calhng context!

';imbperf_iMesh.cpp &3 "% TypeSequenceManager.hpp &3 'ﬂstl_tree.h

22 * Define less-than comparison for EntitySequence pointers as a comparison
23 * of the entity handles in the pointed-to EntitySequences. m
24 */
25 class SequenceCompare { [
26 public: bool operator()(const EntitySequence* a,
27 { return a->end_handle() < b->start_handle(); } C.OS.tS for
28__1; | e inlined procedures
e loops
‘ '\. Callers View 'r;, Flat View p

[® function calls in full context

| & 1\(Sli‘txJHﬁl’H

Scope | PAPI_L1_DCM (I) ¥ PAPI_TOT_CYC () F

¥ main 8.63e+08 100 % 1.13e+11 100 S &
¥ [testB(void*, int, double const*, int const*) 8.35e+08 96.7% 1.10e+ll 97.6%ml
¥linlined from mbperf_iMesh.c 6.8le+08 78.9% 0.98e+1l 86.5%
¥| loop at mbperf=iMesh.cpp: 280—313‘ 3.43e+08 39.8% 3.37e+10 29.9%
¥ [P imesh_getvtxarrcoords_ 3.20e+08 37.1% | 2.18e+10 19.3%
¥ [MBCore:get_coords(unsigned long const*, int, double*) c¢ 3.20e+08 37.1% 2.l6e+10 19.1%
VIIooE at MBCore,cge: 681-693| 3.20e+08 37.1% | 2.1l6e+10 19.1%
v[lnlined from stl_tree.h: 472 | 2.04e+08 23.7% 9.38e+09 8.3%
v 2.04e+08 23.6% 9.37e+09 £.3%
¥ |inlined from TypeSequenceManager.hpp: 27 JL-78e+08 20.6% 8.56e+09 7.6% 1
TypeSequenceManager.hpp: 27 1.78e+08 20.6% 8.56e+09 7.6%

Q 4>

Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks

* Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress

The Problem of Scaling

1.000 (e—
0.875
>
(S
3
g 0.750
T — Ideal efficiency
— Actual efficiency
0.625
0.500

oS
LS\

CPUs

Note: higher is better

Pinpointing and Quantifying Scalability Bottlenecks

/’

()

\

600K
NN

_/

\

/’

-

|
PN 200K
A

Weak scaling: no coefficients

Strong scaling: needs red coefficients

\

v
%ﬁ‘% N o0k
I
A

Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

To

90

plely 2haubop

fm
Magnetic
Rayleigh-Taylor

Nova outbursts on white dwarfs

Cellular detonation

University of Chicago FLASH
white dwarf collapse
Blue Gene/P

8192 vs. 256 processors
weak

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability
Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 10

S3D:Multicore Losses at the Procedure Level

hpcviewer: [Profile Name]

"¢ getrates.f "¢ rhsf.f90 &3 | "% diffflux_gen_uj.f

lsubroutine rhsf(q, rhs)

! Changes

! Ramanan Sankaran - 01/04/05

! 1. Diffusive fluxes are computed without having to convert units.

6! Ignore older comments about conversion to CGS units.

‘! This saves a lot of flops.
! 2. Mixavg and Lewis transport modules have been maede interchengeable
! by adding dummy arguments in both.

Author: James Sutherland

!
12 !} Date: April, 2082
13
i | This routine calculates the time rate of change for the 1
15 ! momentum, continuity, energy, and species equations.
1A)
¢ Calling Context View | 5 Callers View | ™% Flat View =0

|2 &2 3 |6/foll

Scope 1-core (ms) () l-core (ms) (E) | 8-core(1l) (ms) (1)

Experiment Aggregate Metrics 1.11e08 100 % 1.11e08 100 % 1.88e¢08 100%
rhsf 1.07e08 96.5% 6.60e06 5.9% 1.77e08 94.1%
diffflux_proc_looptool 2.86e06 2.6% 2.86e06 2.6% £.12e06 4.3%
integrate_erk_jstage_|t 1.09e08 98.1% 1.25e06 1.1% 1.84e08 97.9%
GET_MASS_FRAC.in.VARIABLES_M1.49006 1.3% 1.49006 1.3% 6.08006 3.2%
ratx 1.01e07 9.1% 1.00e07 9.0% 4.4l1e07 23.5%
qssa 3.52e06 3.2% 3.52e06 3.2% 5.71e06 3.0%
ratt 3.26e07 29.2% |1.48e07 13.3% | 4.38e07 23.3%
CALC_INV_AVG_MOL WT.in.THER9.70e05 0.9% 9.70e05 0.9% 2.68e06 1.4%
computeheatflux_looptool 1.46006 1.3% 1.46e06 1.3% 2.88¢06 1.5%
rdwdot 3.09e06 2.8% 3.09e06 2.8% 4.33e06 2.3%

65e07

.12e06
.94e06
.08e06
.40e07
.71el6
.66e07
.68e06
.88e06
.33e06

core(l) (ms) (b)...
1.88e08 100 %

8.8%
4.3%
3.2%
3.2%
7.4%
3.0%
8.8%
1.4%
1.5%
2.3%

Multicore Loss ¥
7.64e07 100%
13.0%

6.9%
6.1%
6.0%
5.2%
2.9%
2.3%
2.2%
1.8%
1.6%

>

11

S3D: Multicore Losses at the Loop Level

66 hpcviewer: [Profile Name] (-
"¢ getrates.f "¢ rhsf.f0 " diffflux_gen_uj.f &3 =0
193 *ge. 2) then —~

194 1__ujUpper3d = (3 -1 +1)/3*3+1-1

195 dom=1,1__ujUpper3d, 3

196 don=1, n_spec - 1

197 do 1¢__2 - 1, nz

198 do 1t__1 = 1, ny

199 do 1t__9@ = 1, nx

200 diffflux(1t__0, 1t__1, 1t__2, n, m) = -ds_mixavg

201 *(Le__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m) + y

202 *s(1t_.0, 1t__1, 1t__2, n) * grad_mixmw(1lt__0, 1t__1, 1t__2, m))

203 diffflux(l¢__0, 1t__1, 1t__2, n_spec, m) = difff

204 *lux(lt__0, 1t__1, 1t__2, n_spec, m) - diffflux(1t__0, 1t__1, 1t__2 []

205 *. n, m)

206 diffflux(lt__9, 1t__1, 1t__2, n, m+ 1) = -ds_m b

207 *xavg(1t__@, 1t__1, 1t__2, n) * (grad_ys(lt__9, 1t__1, 1t__2, n, m

AR P 1) a wel1E A 1F 1 0% 2 A Y arad mivew(1lE A TF 1 Nk 2

"¢ Calling Context Viewl“i Callers Vlewl"'i_ Flat View =0

284 1|6
Scope 1-core (ms) (1) l-core (ms) (E) | 8-core(l) (ms) () 8-core(l) (ms) (B)... Multicore Loss ¥
loop at diffflux_gen_uj.f: 197-2232.86e06 2.6% 2.86e06 2.6% B.12e06 4.3% 8.12e06 4.3%| 5.27e06 s.sso
loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1%
loop at variables_m.f90: 88-99 1.49€06 1.3% 1.49e06 1.3% 6.08e06 3.2% 6.08e06 3.2%| 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2% 6.49e06 3.5% 3.72e06 2.0%| 2.4le06 3.1%
loop at rhsf.f90: 538-544 3.35e06 3.0% 1.45e06 1.3% 7.06006 3.8% 31.82¢06 2.0% 2.36e06 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% 1.47e06 1.3%| 5.86e06 3.1% 3.42e06 1.8%| 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0.7% £.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2% 1.48e06 1.9%
loop at heatflux_It_gen.f: 5-132 1.46e06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.4le06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0%| 1.20e06 1.6%
loop at getrates.f: 504-505 8.00006 7.2% 8.00006 7.2% B©.74006 4.7% 8.74606 4.7%| 7.35005 1.0%
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e08 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3

12

Outline

 Evaluating context-sensitive behavior

 Pinpointing and quantifying scalability bottlenecks
 Analyzing multithreaded computations with work stealing
 Quantifying the impact of lock contention on threaded code
 Understanding how computations evolve

e Work in progress

13

Cilk: A Multithreaded Language

cilk int fib(n) {

if (n < 2) return n;
else { @

}
}

int x, y;

x = spawn fib(n-1) ; ° °

y = spawn fib(n-2) ;

sync;

return/ (x + y); ° ° ° @

asynchronouls calls
create logical tasks that ’ ’ ..quickly create significant

only block ata sync...

logical parallelism.

14

Cilk Program Execution using Work Stealing

 Challenge: Mapping logical tasks to compute cores

e Cilk approach:
— lazy thread creation plus work-stealing scheduler
e spawn: a potentially parallel task is available
« an idle thread steals tasks from a random working thread

RS
.“"‘ , "-'\
'Possible Execution: | N
thread 1 begins .”"‘.""""" ~ 0 1
thread 2 steals from 1 o N R '
thread 3 steals from 1 R SR . -

) S\
o . Y4 ¢
L} * \
: " \ 7 \, /
o 4

15

e Consider thread 3:

Wanted: Call Path Profiles of Cilk

.;'r ."lg thread 1
thread 2

thread 3

Work stealing separates
user-level calling contexts in
space and time

| |
— physical call path: | @l

s

| - 1
— logical call path: ,@T’ 0 ‘ l

- - . .
- by

Logical call path profiling: Recover full relationship

between physical and user-level execution "

Effective Performance Analysis

Three Complementary Techniques:

e Recover logical calling contexts in presence of work-stealing

lllllllllllllllllllll

cilk int fib(n) { . s
if (n < 2) {...} ®_:’®
| L 2

else { e T
int x, y;
x = spawn fib(n-1) ; /f
y = spawn fib (n-2);

high parallel overhead from

sync; creating many small tasks

return (x + y):

 Quantify parallel idleness (insufficient parallelism)
* Quantify parallel overhead

o Attribute idleness and overhead to logical contexts
— at the source level

17

Measuring & Attributing Parallel Idleness

* Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts

— insight: attribute idleness to its cause: context of working thread
a thread looks past itself when ‘bad things’ happen to others

* Work stealing-scheduler: one thread per core

— maintain W (# working threads) and | (# idling threads)
slight modifications to work-stealing run time
— atomically incr/decr W when thread exits/enters scheduler
 when a sample event interrupts a working thread
— | = #cores - W
— apportion others’ idleness to me: |/ W

e Example: Dual quad-cores; on a sample, 5 are working:

o o

foreach W +=1 > W=5 idle: drop sample
worker: Z +=3/5 ZI — 3 (it’s in the scheduler!)

18

Parallel Overhead

e Parallel overhead:

— when a thread works on something other than user code
(we classify delays -- e.g., wait time -- as idleness)

* Pinpointing overhead with call path profiling

— impossible, without prior arrangement
« work and overhead are both machine instructions

— insight: have compiler tag instructions as overhead

— quantify samples attributed to instructions that represent ovhd
use post-mortem analysis

19

Top-down Work for Cilk ‘Cholesky’

™ O O hpcviewer: cholesky (dual Barcelona)[--nproc 8 -n 3000 -z 30000] -
e cholesky.cilk &3 | ™% invoke-main.c we cilk.c = 0
650 /* -
651 * Compute Cholesky factorization of A.
652 */ m
652cilk Matrix cholesky(int depth, Matrix a) A
654 { T

"W Calling Context View

«», Callers View

}1, Flat View

13.5% of cilk main’s

total effort was spentin

idleness...

|2 26|
e [work (all) e
¥ B cilk_main 5.l4e+10 96.2%
v B cholesky 2.64e+10 49.4302.97e+00
¥ [backsub 1.13e+10 21.1% |1.38e-01
> B backsub 5.83e+09 10.9%|1.29e-01
» B> mul_and_subT [5.45e+09 10.2%|8.58e-03
¥ [P cholesky 0.99e+10 18.6%|2.80e+00
» B cholesky 3.78e+09 7.1%|2.70e+00
> B backsub 3.15e+09 5.9%|8.41le-02
» B> mul_and_subT [3.01e+09 5.6%|1.62e-02
» BY mul_and_subT 5.19e+09 9.7%|2.97e-02
» B> mul_and_subT 2.41e+10 45.1% |8.56e-02
> [free_matrix 4.56e+08 0.9%|5.92e+00
» B num_nonzeros 1.26e+08 0.2%|1.63e+00

percent idleness

.3%|2.22e-01 26.2% ~

.5% §2.15e-01§25.3%

percent overhead

©

2]

1.08 2.59%9e-02 3.1%

0.9% 2.59e-02 3.1% |||

— 2.97% and 0.215% of
20-3% 1-9 cholesky’s total effort
19-€%1- \was spent in idleness
°-€* 2.2 and overhead.

0.1% 7.4

0.2%

0.6% 7.41le-03 0.9%

42.9%

11.9%

20

Using Parallel Idleness & Overhead

e Total effort = useful work + idleness + overhead

e Enables powerful and precise interpretations

idleness | overhead |interpretation

low low effectively parallel

low high coarsen concurrency granularity
high low refine concurrency granularity
high high switch parallelization strategies

* Normalize w.r.t. total effort to create
— percent idleness or percent overhead

Nathan Tallent, John Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.

21

Outline

Evaluating context-sensitive behavior

Pinpointing and quantifying scalability bottlenecks
Analyzing multithreaded computations with work stealing
Quantifying the impact of lock contention on threaded code
Understanding how computations evolve

Work in progress

22

Understanding Lock Contention

 Lock contention => idleness:
— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

 Use “blame-shifting:” shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

e How it works
— consider spin-waiting*
— sample a working thread:
« charge to ‘work’ metric
— sample an idle thread
« accumulate in idleness counter assoc. with lock (atomic add)

— working thread releases a lock
- atomically swap 0 with lock’s idleness counter
« exactly represents contention while that thread held the lock
« unwind the call stack to attribute lock contention to a calling context

*different technique handles blocking 23

Lock contention in MADNESS

578 add(MEMFUN_OBIT(memfunT)& obj,

579 memfunT memfun,

580 const arglT& argl, const arg2T& arg2, const arg3T& arg3, const TaskAttributes& |
581 Future<REMFUTURE(MEMFUN_RETURNT (memfunT))> result;

add(new TaskMemfun<memfunT>(result,obj,memfun,argl,arg?,arg3,attr));

- RS quantum chemistry; MPI + pthreads
e

e
"3 Calling Context View W tr, Flat View
| 56 |5 A A 16 cores; 1 thread/core (4 x Barcelona)
Scope ... %idleness (@ll/E) ¥ idleness (all/E)
Experiment Aggregate Metrics 2.35e+01 100 % |1.57e+09 100 ¢

¥ pthread_spin_unlock 100.0 lock contention
v & madness:Spinlock :unlock() const 2.35e+01 100.0

accounts for 23.5%
of execution time.

1.78e+01 75.6%

1.78e401 75.6%

7.35e+00 31.2%

¥ @ inlined from worldmutex.h: 142
v @imadness: ThreadPool::add(madness::PoolTaskinterface*)
v <3 inlined from worldtask.h: 581
» @ madness:Future<> madness:WorldObject<> task<>(7.35e+00 31.2%

.92e+08 31.2%

4
4 .
v 43 inlined from worldtask.h: 569 4.560400 19.4% |3.0¢ Addlng futures
» ¢ madness:Future<> madness:WorldObject<>:task<>(4.56e+00 19.4% |3.03 to shared global
» &3 inlined from worlddep.h: 68 1.53e+00 6.5% (1.0 work queue.
v 43 inlined from worldtask.h: 570 1.49¢400 £€.3% 9.97e407 6.3%
» @@ madness:Future<> madness:WorldObject<>:task<>(1.49e+00 6.3%|9.97e+07 6.3%
» & inlined from worldtask.h: 558 1.38e+00 5.9% |9.26e+07 5.9%
2.9% |4.49¢407 2.9%

> 48 madness Future<> madncss::WorIdTastucuc;:add<>(ma|5-720-01

ey T ¢ 24

Outline

Evaluating context-sensitive behavior

Pinpointing and quantifying scalability bottlenecks
Analyzing multithreaded computations with work stealing
Quantifying the impact of lock contention on threaded code
Understanding how computations evolve

Work in progress

25

Understanding Temporal Behavior

Profiling compresses out the temporal dimension
—that’s why serialization is invisible in profiles

What can we do? Trace call path samples

—sketch:
— N times per second, take a call path sample of each thread

— organize the samples for each thread along a time line
— view how the execution evolves left to right
— what do we view?

assign each procedure a color; view execution with a depth slice

Time

2@

Call Path Sample Trace for GTC

Gyrokinetic Toroidal Code (GTC)

e 32 process MPI program
e Each process has a pair of threads managed with OpenMP

Clugn Comset vem. P,

Outline

Evaluating context-sensitive behavior

Pinpointing and quantifying scalability bottlenecks
Analyzing multithreaded computations with work stealing
Quantifying the impact of lock contention on threaded code
Understanding how computations evolve

Work in progress

28

Work in Progress

 Analyze call path profiles for 100K+ cores in parallel
— aggregate profile CCTs for different cores to get union CCT
— compute summary statistics (e.g. min, mean, max, std. deviation)

— hypothesis: we can apply our top-down methodology for
analyzing CCTs to assess profile differences

« pinpoint and quantify profile differences at a high level
« drill down using differential analysis of sample profiles

e Develop GUI support for sorting and histogramming profile
values to cope with data from thousands of cores

 Using hardware monitoring capabilities to gain insight into
data access patterns
— identify potential for improving locality and data reuse

* Visualize sampled traces for thousands of cores

29

