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Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

• dynamic loading or static binaries
• SPMD parallel codes with threaded node programs
• batch jobs

— production executions

• Effective performance analysis
— pinpoint and explain problems

• intuitive enough for scientists and engineers
• detailed enough for compiler writers

— yield actionable results

• Scalable to petascale systems



• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress
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• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

State of the Art: Call Path Profiling
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Call path sample  Calling Context Tree (CCT)

Overhead proportional to sampling frequency... 
...not call frequency

instruction  pointer

return address

return address

return address



Unwinding Fully-optimized Parallel Code
Unwinding based on demand-driven binary analysis 

• Identify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time

• Compute unwind recipes for a procedure
—  scan the procedure’s object code, tracking the locations of 

• caller’s program counter
• caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
• Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
• Results

— almost flawless unwinding
— overheads of < 2% for sampling frequencies of 200/s 
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Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and 
attribution of program performance. PLDI 2009, Dublin, Ireland,  Distinguished Paper Award.



Detailed Attribution: MOAB Mesh Benchmark

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view
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• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing
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           The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

Note: higher is better



9

Pinpointing and Quantifying Scalability Bottlenecks

200K

400K600K =

P Q

Weak scaling

−P ×        Q ×

                       : no coefficients
 Strong scaling: needs red coefficients

C. Coarfa et al.  Scalability 
analysis of SPMD codes 
using expectations. ICS 
2007, Seattle, WA.

N. Tallent et al.  
Diagnosing scalability 
bottlenecks in emerging 
petascale applications.  
SC 2009, Portland, OR.



Code:   University of Chicago FLASH
Simulation:  white dwarf collapse
Platform:  Blue Gene/P 
Experiment:  8192 vs. 256 processors
Scaling type:  weak
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Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago



S3D:Multicore Losses at the Procedure Level
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S3D: Multicore Losses at the Loop Level
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• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress
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Cilk: A  Multithreaded Language
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cilk int fib(n) {
  if (n < 2) return n;
  else {
    int x, y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x + y);
  }
}

f

f
(n)

f

ff ff

...... ...... ......

......

asynchronous calls 
create logical tasks that 
only block at a sync...

...quickly create significant 
logical parallelism.



Cilk Program Execution using Work Stealing
• Challenge: Mapping logical tasks to compute cores

• Cilk approach: 
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread
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Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f

f
(n)

f

ff ff

...... ...... ......

......



Wanted: Call Path Profiles of Cilk

• Consider thread 3:
— physical call path:

— logical call path:

16

thread 1
thread 2
thread 3

f f ...

f
(n)

f f ...

Logical call path profiling: Recover full relationship 
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f

f

f

ff ff

...... ...... ......

......



Three Complementary Techniques:

Effective Performance Analysis

• Recover logical calling contexts in presence of work-stealing

• Quantify parallel idleness (insufficient parallelism)

• Quantify parallel overhead

• Attribute idleness and overhead to logical contexts
— at the source level
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cilk int fib(n) {
  if (n < 2) {...}
  else {
    int x, y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x + y);

high parallel overhead from 
creating many small tasks 

f
(n)

f f ...



 

• Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts
— insight: attribute idleness to its cause: context of working thread

• a thread looks past itself when ‘bad things’ happen to others

• Work stealing-scheduler: one thread per core
— maintain W (# working threads) and I (# idling threads)

• slight modifications to work-stealing run time
 – atomically incr/decr W when thread exits/enters scheduler

• when a sample event interrupts a working thread 
 – I ﹦ #cores − W 

 – apportion others’ idleness to me: I / W

• Example: Dual quad-cores; on a sample, 5 are working:

Measuring & Attributing Parallel Idleness
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idle: drop sample
(it’s in the scheduler!) 

W += 1
I += 3/5

�
W = 5�
I = 3

for each
worker:



Parallel Overhead
• Parallel overhead: 

— when a thread works on something other than user code
• (we classify delays -- e.g., wait time -- as idleness)

• Pinpointing overhead with call path profiling
— impossible, without prior arrangement

• work and overhead are both machine instructions
— insight: have compiler tag instructions as overhead
— quantify samples attributed to instructions that represent ovhd

• use post-mortem analysis
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Top-down Work for Cilk ‘Cholesky’
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13.5% of cilk_main’s 
total effort was spent in 
idleness...

2.97% and 0.215% of 
cholesky’s total effort 
was spent in idleness 
and overhead.

Cilk-
level 
call 
path

➊

➋

➌
percent percent



Using Parallel Idleness & Overhead
• Total effort = useful work + idleness + overhead

• Enables powerful and precise interpretations

• Normalize w.r.t. total effort to create
— percent idleness or percent overhead
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idleness overhead interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

Nathan Tallent, John Mellor-Crummey. Effective performance measurement 
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.



• Evaluating context-sensitive behavior
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• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress
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Understanding Lock Contention
• Lock contention => idleness:

— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

• Use “blame-shifting:” shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

• How it works
— consider spin-waiting* 
— sample a working thread:

• charge to ‘work’ metric
— sample an idle thread

• accumulate in idleness counter assoc. with lock (atomic add)
— working thread releases a lock

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to attribute lock contention to a calling context

23*different technique handles blocking



Lock contention in MADNESS
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lock contention 
accounts for 23.5% 
of execution time.

Adding futures 
to shared global 
work queue.

µs16 cores; 1 thread/core (4 x Barcelona)

quantum chemistry; MPI + pthreads
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Time

Understanding Temporal Behavior

• Profiling compresses out the temporal dimension
—that’s why serialization is invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view execution with a depth slice



Call Path Sample Trace for GTC
Gyrokinetic Toroidal Code (GTC)

• 32 process MPI program
• Each process has a pair of threads managed with OpenMP 
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L. Adhianto et al. HPCToolkit: Tools for performance analysis of optimized parallel 
programs, Concurrency and Computation: Practice and Experience. To appear.



• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

28

Outline



29

Work in Progress
• Analyze call path profiles for 100K+ cores in parallel

— aggregate profile CCTs for different cores to get union CCT
— compute summary statistics (e.g. min, mean, max, std. deviation)
— hypothesis: we can apply our top-down methodology for 

analyzing CCTs to assess profile differences
• pinpoint and quantify profile differences at a high level
• drill down using differential analysis of sample profiles

• Develop GUI support for sorting and histogramming profile 
values to cope with data from thousands of cores

• Using hardware monitoring capabilities to gain insight into 
data access patterns
— identify potential for improving locality and data reuse

• Visualize sampled traces for thousands of cores


