
Gaining Insight into Parallel Program
Performance Using Sampling

John Mellor-Crummey, Laksono Adhianto,
Mike Fagan, Mark Krentel, Nathan Tallent

Department of Computer Science
Rice University

hpctoolkit.org

2

Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

• dynamic loading or static binaries
• SPMD parallel codes with threaded node programs
• batch jobs

— production executions

• Effective performance analysis
— pinpoint and explain problems

• intuitive enough for scientists and engineers
• detailed enough for compiler writers

— yield actionable results

• Scalable to petascale systems

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

3

Outline

• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

State of the Art: Call Path Profiling

4

Call path sample Calling Context Tree (CCT)

Overhead proportional to sampling frequency...
...not call frequency

instruction pointer

return address

return address

return address

Unwinding Fully-optimized Parallel Code
Unwinding based on demand-driven binary analysis

• Identify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time

• Compute unwind recipes for a procedure
— scan the procedure’s object code, tracking the locations of

• caller’s program counter
• caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
• Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
• Results

— almost flawless unwinding
— overheads of < 2% for sampling frequencies of 200/s

5

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and
attribution of program performance. PLDI 2009, Dublin, Ireland, Distinguished Paper Award.

Detailed Attribution: MOAB Mesh Benchmark

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

7

Outline

8

 The Problem of Scaling

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

Note: higher is better

9

Pinpointing and Quantifying Scalability Bottlenecks

200K

400K600K =

P Q

Weak scaling

−P × Q ×

 : no coefficients
 Strong scaling: needs red coefficients

C. Coarfa et al. Scalability
analysis of SPMD codes
using expectations. ICS
2007, Seattle, WA.

N. Tallent et al.
Diagnosing scalability
bottlenecks in emerging
petascale applications.
SC 2009, Portland, OR.

Code: University of Chicago FLASH
Simulation: white dwarf collapse
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

10

Scalability Analysis Demo

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

S3D:Multicore Losses at the Procedure Level

11

S3D: Multicore Losses at the Loop Level

12

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

13

Outline

Cilk: A Multithreaded Language

14

cilk int fib(n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}

f

f
(n)

f

ff ff

......

......

asynchronous calls
create logical tasks that
only block at a sync...

...quickly create significant
logical parallelism.

Cilk Program Execution using Work Stealing
• Challenge: Mapping logical tasks to compute cores

• Cilk approach:
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread

15

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f

f
(n)

f

ff ff

......

......

Wanted: Call Path Profiles of Cilk

• Consider thread 3:
— physical call path:

— logical call path:

16

thread 1
thread 2
thread 3

f f ...

f
(n)

f f ...

Logical call path profiling: Recover full relationship
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f

f

f

ff ff

......

......

Three Complementary Techniques:

Effective Performance Analysis

• Recover logical calling contexts in presence of work-stealing

• Quantify parallel idleness (insufficient parallelism)

• Quantify parallel overhead

• Attribute idleness and overhead to logical contexts
— at the source level

17

cilk int fib(n) {
 if (n < 2) {...}
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);

high parallel overhead from
creating many small tasks

f
(n)

f f ...

• Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts
— insight: attribute idleness to its cause: context of working thread

• a thread looks past itself when ‘bad things’ happen to others

• Work stealing-scheduler: one thread per core
— maintain W (# working threads) and I (# idling threads)

• slight modifications to work-stealing run time
 – atomically incr/decr W when thread exits/enters scheduler

• when a sample event interrupts a working thread
 – I ﹦ #cores − W

 – apportion others’ idleness to me: I / W

• Example: Dual quad-cores; on a sample, 5 are working:

Measuring & Attributing Parallel Idleness

18

idle: drop sample
(it’s in the scheduler!)

W += 1
I += 3/5

�
W = 5�
I = 3

for each
worker:

Parallel Overhead
• Parallel overhead:

— when a thread works on something other than user code
• (we classify delays -- e.g., wait time -- as idleness)

• Pinpointing overhead with call path profiling
— impossible, without prior arrangement

• work and overhead are both machine instructions
— insight: have compiler tag instructions as overhead
— quantify samples attributed to instructions that represent ovhd

• use post-mortem analysis

19

Top-down Work for Cilk ‘Cholesky’

20

13.5% of cilk_main’s
total effort was spent in
idleness...

2.97% and 0.215% of
cholesky’s total effort
was spent in idleness
and overhead.

Cilk-
level
call
path

➊

➋

➌
percent percent

Using Parallel Idleness & Overhead
• Total effort = useful work + idleness + overhead

• Enables powerful and precise interpretations

• Normalize w.r.t. total effort to create
— percent idleness or percent overhead

21

idleness overhead interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

Nathan Tallent, John Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

22

Outline

Understanding Lock Contention
• Lock contention => idleness:

— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

• Use “blame-shifting:” shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

• How it works
— consider spin-waiting*
— sample a working thread:

• charge to ‘work’ metric
— sample an idle thread

• accumulate in idleness counter assoc. with lock (atomic add)
— working thread releases a lock

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to attribute lock contention to a calling context

23*different technique handles blocking

Lock contention in MADNESS

24

lock contention
accounts for 23.5%
of execution time.

Adding futures
to shared global
work queue.

µs16 cores; 1 thread/core (4 x Barcelona)

quantum chemistry; MPI + pthreads

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

25

Outline

2617

Time

Understanding Temporal Behavior

• Profiling compresses out the temporal dimension
—that’s why serialization is invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view execution with a depth slice

Call Path Sample Trace for GTC
Gyrokinetic Toroidal Code (GTC)

• 32 process MPI program
• Each process has a pair of threads managed with OpenMP

27
L. Adhianto et al. HPCToolkit: Tools for performance analysis of optimized parallel
programs, Concurrency and Computation: Practice and Experience. To appear.

• Evaluating context-sensitive behavior

• Pinpointing and quantifying scalability bottlenecks

• Analyzing multithreaded computations with work stealing

• Quantifying the impact of lock contention on threaded code

• Understanding how computations evolve

• Work in progress

28

Outline

29

Work in Progress
• Analyze call path profiles for 100K+ cores in parallel

— aggregate profile CCTs for different cores to get union CCT
— compute summary statistics (e.g. min, mean, max, std. deviation)
— hypothesis: we can apply our top-down methodology for

analyzing CCTs to assess profile differences
• pinpoint and quantify profile differences at a high level
• drill down using differential analysis of sample profiles

• Develop GUI support for sorting and histogramming profile
values to cope with data from thousands of cores

• Using hardware monitoring capabilities to gain insight into
data access patterns
— identify potential for improving locality and data reuse

• Visualize sampled traces for thousands of cores

