
GPULib: GPU Acceleration of Scientific
Applications in (Very) High-Level

Languages

Peter Messmer
messmer@txcorp.com

Tech-X Corporation
5621 Arapahoe Ave., Boulder, CO 80303

www.txcorp.com

messmer@txcorp.com

Los Alamos Computer Science Symposium, October 14-15 2008, Santa Fe, NM

This work is supported by NASA SBIR Phase-II Grant #NNG06CA13C

Paul J. Mullowney, Dan Karipides, Keegan Amyx, Nate Sizemore,
Brian Granger, Mike Galloy, David Fillmore

Who are we? What is Tech-X?

Connecting

Physics and HPC

Tech-X Corporation 2

Boulder, CO
~55 employees, 45 PhD

Physicis, CS, Math

And who is paying for that?

Tech-X Corporation 3

1 min

NASA mission is facing
a data analysis problem

The year is 2005..

5 hrs

IDL (Interactive Data Language
by ITT VIS) is the tool of choice
for data analysis

“People are starved for cycles”

Scientists like to develop in very
high-level languages

• Here “VHLL”: IDL (Interactive Data Language), MATLAB, Python

• Want to spend their time doing research, not code development

• Sociology: Communities “lock-in” on languages
– Solar Physics, hyper-spectral imaging: IDL
– Neuro-Biology, financial modelling: MATLAB

• Languages offer large collections of domain relevant algorithms

• Increasing data volumes: Analysis has to scale as well• Increasing data volumes: Analysis has to scale as well

• => Conventional cluster computing too cumbersome
– Not always access to cluster
– No desire to write MPI code
– “Can’t you give me something I can plug into my computer and it makes things 10x

faster?”

⇒ Accelerator hardware (focus here on GPUs)

⇒ CUDA a great architecture, but still requires understanding of the hardware

Goal of the project:
Provide acceleration without turning scientists into hardware experts

GPULib design goals: Get speedup from
accelerator in a transparent way

• Accelerators directly usable from within VHLL
– Users chose the high-level languages for a reason!
– Many 4th generation languages vector oriented -> Beneficial to GPU

• Intuitive for users
– Use host language features to make use of accelerators intuitive

• Code has to remain portable
– Key!
– Provide emulation, but do not incur overhead

• Take advantage of accelerator
– Obtain as high a performance as possible
– Less than peak is acceptable

• Provide as many operations as possible on accelerator to reduce data
motion

• Take advantage of available libraries
– cuBLAS, cuFFT

• Be abstract enough to enable porting to other accelerators

Messmer, Mullowney, Granger, “GPULib: GPU computing in High-Level Languages”,

Comuters in Science and Engineering, 10(5), 80, 2008.

GPULib layered architecture is easily extensible

GPUlib wrappers
(language specific, includes software emulator)

IDL, MATLAB or Python, Java

GPULib functions

GPU

Vector

Arithmetic

NVIDIA functions

cuBLAS cuFFT
Data

Manipulation

Complex

Operations

CUDA
Runtime

API

GPUlib: One way to simplify GPU development

• GPULib provides a large set of vector operations
– Data transfer GPU/CPU, memory management
– Arithmetic, transcendental, logical functions
– Data parallel primitives (prefix-sum)
– Array operations (reshaping, interpolation, range selection, type casting)
– NVIDIA’s cuBLAS, cuFFT

• Data objects on GPU represented as structure on CPU• Data objects on GPU represented as structure on CPU
– Contains size information, dimensionality and pointer to GPU memory

• Library can be run without the library

• Download from http://gpulib.txcorp.com
(free for non-commercial use)

A GPULib example in IDL

CPU GPU

X X_gpuIDL> gpuPutArr, x, x_gpu

y y_gpu
IDL> gpuGetArr, y_gpu, y

IDL> gpuSin, x_gpu, y_gpu

Sin()
x_gpu

y_gpu

“Scientists want the control to increase
performance as necessary but won’t sacrifice
everything to performance”

Basili et al, “Understanding the High-Performance Computing Community”, IEEE
Computer, July ’08.

Can you get all the performance with a
vector library?

⇒ Vector operations with higher compute density (affine transform of arguments)

z = a x + b y + c

z = a exp(b y + c) + d

⇒ Domain-specific algorithms

How to get performance?

• Kernels are very fast, GPU<->CPU data transfer is
slow

Kernel only

Single invocation

ax+by+c
Sin(x)

exp(x)

lgamma(x)

Vector length

Vector length

10 invocationsx+y
exp(x)

Example: Image Deconvolution

• Image is convolved with detector point-spread function:

• Clean image by (complex) division in Fourier space:

dudvvuPvyuxIyxI trueobs ∫ −−=),(),(),(

))(/)((),(
1

PFFTIFFTFFTyxI obstrue

−
=

• Large computational load per CPU-GPU data transfer

• Real world problem

• Speedup ranging from 5x – 28x for 256x256 – 3kx3k images

• People downloaded GPULib with interests in

– Medical Imaging

– Image Rectification

– Remote sensing

– Signal processing

– Wildlife tracking

– and many more …

What happened next?

– and many more …

• Customers and evaluations include

– NASA

– US AFRL

– Rutherford Appleton Lab

– Leiden University, NL

– Laboratory for Atmospheric and Space Physics (LASP)

– Many universities …

GPULib example 1: Image processing

Principal
Component

Analysis
(PCA)

∆∆∆∆t =3s

Data courtesy of
Dr. Mort Canty,

FZ Juelich, Germany

GPULib example 3: Simulation

Neutron scattering experiment

Use simulation written in IDL
to compute location of

Data courtesy of
Dr. Matthias Gutmann,
Rutherford Appleton

Research Lab, UK

to compute location of
scattering maxima

(Bragg peaks)

Where we would like to go..

• More specialized kernels
– Collaborate with users to get their performance tuned
– GPULib enables iterative approach to GPUs/accelerators

• Performance promising enough that library could act as
abstraction for accelerators for “conventional” HPC applications
– Unify of C/Fortran interface

• Develop HPC relevant kernels• Develop HPC relevant kernels
– Ghost cell exchanges
– Particle-push kernels

• Target different accelerators
– Portable code for accelerators

Conclusions

• GPUlib offers large set of vector operations on GPU

• Enables users to take advantage of accelerators from within their
favourite languages

• One example of accelerator interface that requires no hardware
knowledge

• Scientists do not lock in on a particular hardware • Scientists do not lock in on a particular hardware

• We are happy to collaborate on getting your analysis accelerated
on GPUs

