
Parallelism isn't Enough:
An Architect's Perspective on Building and
Programming Terascale Processors and Petascale
Systems

Mattan Erez

The University of Texas at Austin

LACSS 2008, Programming Models Workshop
October 15, 2008

N

LACSS’08, Programming Models © 2008 Mattan Erez

Outline

•  Power is the number one concern
–  A word on reliability and cost in general

•  Parallelism isn’t enough
–  Properties of efficient VLSI

•  Locality, Parallelism, and Hierarchical control
•  Threading and streaming models
•  Memory systems
•  Programming models

N

LACSS’08, Programming Models © 2008 Mattan Erez

Supercomputer performance outpaces
Moore’s law VLSI scaling

1E+8
1E+9

1E+10
1E+11
1E+12
1E+13
1E+14
1E+15
1E+16
1E+17
1E+18

Su
st

ai
ne

d
FL

O
P/

s

Num. 1
Num. 10
Num.500
Idealized VLSI

N

LACSS’08, Programming Models © 2008 Mattan Erez

1

10

100

1000

10000

100000

1000000

To
ta

l P
ow

er
 [k

W
]

Ef
fic

ie
nc

y
[G

FL
O

PS
/k

W
] Power

Efficiency

N

LACSS’08, Programming Models © 2008 Mattan Erez

Power is the Dominant Architectural Problem

•  Bad news: power scaling is slowing down
–  Can’t scale Vt much in order to control leakage

•  New technology helps

–  can’t scale Vdd as much

–  power doesn’t go down as it used to

•  Energy/device decreases slower than devices/chip

•  Power goes up if performance scaling continues
–  For same processor architecture

•  Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW
–  How much for many PFLOPS?

N

LACSS’08, Programming Models © 2008 Mattan Erez

There’s more to a system than power

•  Building systems is about optimizing utility/cost
•  Power plays an increasing role

–  Power determines much of operating cost
–  Power determines much of acquisition cost

•  Cooling and facilities

•  Reliability
–  Likelihood of faults is growing, especially soft errors
–  Fault-tolerance == opportunity cost
–  Fault tolerant techniques are scalable

•  Higher power leads to more failures (soft and hard)
•  Bandwidth and compute density

N

LACSS’08, Programming Models © 2008 Mattan Erez

How Can We Reduce Power?

•  Compute less
–  Use better algorithms

•  Waste less
–  Don’t build/use unnecessary hardware
–  No unnecessary operations
–  No unnecessary data movement
–  Tuning can help – minimize power per acceptable

performance goal

•  Specialize more
–  Specialized circuits are more efficient

–  Tuning can help decide when

Parallelism isn’t enough

Parallelism, Locality, and efficient Hierarchical control

N

LACSS’08, Programming Models © 2008 Mattan Erez

Wasting Less – Effective Performance in VLSI

•  Parallelism
–  10s of FPUs per chip
–  Efficient control

•  Locality
–  Locality lowers power
–  Reuse reduces

global BW

•  Throughput Design
–  Throughput oriented I/O
–  Tolerate Increasing

on-/off-chip latencies

•  Minimum control overhead

65n m Chip

$200
1GHz

64-bit FPU
(to scale)

12mm

0.3mm

Increasing
power

Decreasing
BW

Parallelism, locality, latency tolerance,
bandwidth, and efficient control

1 clock

N

LACSS’08, Programming Models © 2008 Mattan Erez

Bandwidth Dominates Energy Consumption

Operation 65nm 32nm 16nm

64b FP Operation 38 12.5 4.2

Read 64b from 16KB Cache 17.5 5.3 2

Transfer 64b across chip (10mm, Rep.) 179 179 179

Transfer 64b across chip (10mm, Cap.) 18 18 18

Transfer 64b off chip 154 115 100

Locality/Communication are key;
Even then, performance is power-bound

N

LACSS’08, Programming Models © 2008 Mattan Erez

Building for Locality, Parallelism, and
Efficient Control

registers

on-chip memory ALUs

interconnect control

N

LACSS’08, Programming Models © 2008 Mattan Erez

Locality & parallelism are easy to first order

N

LACSS’08, Programming Models © 2008 Mattan Erez

Control offers a few more options

•  Data Level Parallelism
–  Amortize control with SIMD

•  Instruction Level Parallelism
–  Amortize control with static scheduling

•  Thread (Task) Level Parallelism
–  Scalable

N

LACSS’08, Programming Models © 2008 Mattan Erez

Data-Level Parallelism

Instruction Sequencer

FPU FPU FPU FPU FPU FPU FPU

FPU FPU FPU FPU

FPU FPU FPU FPU

FPU FPU FPU FPU

•  SIMD
•  Independent

indexing per FPU
•  Full crossbar

between FPUs
•  No sub-word

operation

N

LACSS’08, Programming Models © 2008 Mattan Erez

Data- and Instruction-Level Parallelism

•  A group of FPUs = A
Processing Element
(PE) = A Cluster

•  VLIW
•  Hierarchical switch

provides area
efficiency

Instruction Sequencer

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

N

LACSS’08, Programming Models © 2008 Mattan Erez

Data-, Instruction- and Thread-Level

•  Sequencer group
–  Each instruction

sequencer runs
different kernels

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

N

LACSS’08, Programming Models © 2008 Mattan Erez

Heat-map (Area per FPU) – 64 bit

Area overhead of an
instruction
sequencer

Area overhead of an
inter-cluster switch

Area overhead of
intra-cluster
switches

64

128

32

16

4

2

1

8

1 2 4 8 32 16 64 128
Number of clusters (DLP)

N
um

be
r o

f F
P

U
s

pe
r c

lu
st

er
 (I

LP
)

1.05
1.1
1.2

1.4

2

4

Many reasonable hardware options for 64-bit

N

LACSS’08, Programming Models © 2008 Mattan Erez

Application Performance

0
0.2
0.4
0.6
0.8

1
1.2

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

CONV2D DGEMM FFT3D FEM MD CDP

R
el

at
iv

e
ru

nt
im

e

all_SEQ_busy some_SEQ_busy_MEM_busy

no_SEQ_busy_MEM_busy some_SEQ_busy_MEM_idle

Small performance differences
for “good streaming” applications

N

LACSS’08, Programming Models © 2008 Mattan Erez

So far so good

•  Fairly generic with some nice results

•  Describes just about all throughput architectures
–  NVIDIA
–  ATI
–  Stream processors (Merrimac)
–  Cell
–  Niagara
–  Larrabee

•  So where are the differences?

N

LACSS’08, Programming Models © 2008 Mattan Erez

Wasting Less – Effective Performance in VLSI

•  Parallelism
–  10s of FPUs per chip
–  Efficient control

•  Locality
–  Locality lowers power
–  Reuse reduces

global BW

•  Throughput Design
–  Throughput oriented I/O
–  Tolerate Increasing

on-/off-chip latencies

•  Minimum control overhead

65n m Chip

$200
1GHz

64-bit FPU
(to scale)

12mm

0.3mm

Increasing
power

Decreasing
BW

1 clock

N

LACSS’08, Programming Models © 2008 Mattan Erez

Another level of control hierarchy

•  Different sequencer groups (threads/tasks) need to
coordinate

•  Typically done by a single master
–  Scalar core (Cell, Merrimac)
–  Thread dispatcher (NVIDIA, ATI)
–  Program (Larrabee)

•  Parallel program = sequence of parallel steps

N

LACSS’08, Programming Models © 2008 Mattan Erez

The temporal dimension complicates things

•  Need to hide latency

•  Need parallelism in time

•  How do we isolate concurrent work units?
–  Threading

–  Streaming

N

LACSS’08, Programming Models © 2008 Mattan Erez

Threading and streaming are duals with
respect to sharing and partitioning state

W0 W1 W2 W3 Wn

N

LACSS’08, Programming Models © 2008 Mattan Erez

Threading and streaming are duals with
respect to sharing and partitioning state

•  Tradeoff in managing state
–  Threading: partitioned registers –

the best memory
–  Streaming: partition local memory –

problems with dynamic reuse

WU0
WU3
WU6

WU1
WU4
WU7

Shared Cache

To Memory Channel To Memory Channel
WU0in
WU1in

WU63in

WU64in
WU1in

WU127in

WU0out

WU127out

WU1out

SRF

Differences in namespaces SPs can have more
efficient control and memory systems

Finally, Programming Models:
Expose what’s important to hardware

Ignore what isn’t!

N

LACSS’08, Programming Models © 2008 Mattan Erez

Hierarhical programming model view

Physical component layer:
power, bandwidth, performance

Architecture layer:
locality, parallelism, hierarchical control

Portability and tuning layer:
locality, parallelism, hierarchical control

Application layer:
numerical methods, DSLs

N

LACSS’08, Programming Models © 2008 Mattan Erez

Portability and tuning layer

•  Need massive parallelism
–  Spatial and temporal

•  Locality is critical
–  Doesn’t imply streaming or threading

•  Hierarchy is key

•  Arbitrarily communicating threads are insane

•  Nested bulk synchronous
•  Atomic regions (or operations)

Common canonical model for both
streaming and threading!

N

LACSS’08, Programming Models © 2008 Mattan Erez

Summary:
What should and shouldn not be exposed?

•  Should not:
–  Inter-node communication

•  Hierarchy targets distribution, not directly exposed
•  Single global address space within each level

–  Intricacies of memory system
•  #channels, #banks, line-sizes, …

–  Explicit synchronization
•  Just atomics and barriers

•  Should:
–  Locality, parallelism, and hierarchical control
–  Precision/accuracy

•  Word size
•  Fault tolerance

–  Dynamic irregularity?

N

LACSS’08, Programming Models © 2008 Mattan Erez

Conclusions

•  Power is everything
–  Bandwidth and performance requirements also

•  Locality, parallelism, and hierarchical control
–  Good proxy for power, bandwidth, and performance

•  Convergence/divergence
–  Throughput-architecture “dominate”
–  Threading and streaming are duals

•  Layered system/programming model
–  Portability and tuning layer is key

•  Nested bulk synchronous + atomics
–  Target both stream and thread variants and enable opt.

•  Don’t expose memory details, do expose locality

N

LACSS’08, Programming Models © 2008 Mattan Erez

Conclusions

•  Power is everything
–  Bandwidth and performance requirements also

•  Locality, parallelism, and hierarchical control
–  Good proxy for power, bandwidth, and performance

•  Convergence/divergence
–  Throughput-architecture “dominate”
–  Threading and streaming are duals

•  Layered system/programming model
–  Portability and tuning layer is key

•  Nested bulk synchronous + atomics
–  Target both stream and thread variants and enable opt.

•  Don’t expose memory details, do expose locality

N

LACSS’08, Programming Models © 2008 Mattan Erez

Backup

•  Stream processors are more efficient

N

LACSS’08, Programming Models © 2008 Mattan Erez

Stream Processors have minimalistic dynamic
control

c
lu

ste
r sw

itc
h

c

lu
ste

r sw
itc

h

SR
F la

n
e

SR

F la
n

e

In
te

r-c
lu

ste
r a

n
d

 m
e

m
o

ry sw
itc

h
e

s

c
a

c
he

 b
a

nk
c

a
c

he
 b

a
nk

D
RA

M
 b

a
nk

D
RA

M
 b

a
nk

I/O
 p

in
s

Unpredictable I/O Latencies Static latencies

Decoupling enables efficient static architecture
Separate address spaces (MEM/SRF/LRF)

N

LACSS’08, Programming Models © 2008 Mattan Erez

Stream Architecture Features

•  Exposed deep locality hierarchy
–  explicit software control over data allocation

and data movement
–  flexible on-chip storage for capturing locality
–  staging area for long-latency bulk memory transfers

•  Exposed parallelism
–  large number of functional units
–  latency hiding

N

LACSS’08, Programming Models © 2008 Mattan Erez

Stream Architecture Features

•  Exposed deep locality hierarchy
–  software managed data movement (communication)

•  Exposed parallelism
–  large number of functional units and latency hiding

•  Predictable instruction latencies
•  Optimized static scheduling
•  High sustained performance

N

LACSS’08, Programming Models © 2008 Mattan Erez

Stream Architecture Features

•  Exposed locality hierarchy
–  software managed data movement

•  Exposed parallelism
–  high sustained performance

•  Most instructions manipulate data
•  Minimal hardware control structures

–  no branch prediction
–  no out-of-order execution
–  no trace-cache/decoded cache
–  simple bypass networks
–  …

Efficient hardware greater software responsibility

N

LACSS’08, Programming Models © 2008 Mattan Erez

Current State of the Art in Stream
Software Systems

•  Kernel/Stream 2-level programming model
–  Good kernel scheduling

N

LACSS’08, Programming Models © 2008 Mattan Erez

Compiler Optimizes VLIW Kernel Scheduling

Optimized schedule

SPs decouples memory and execution
enables static optimization and reduces hardware

N

LACSS’08, Programming Models © 2008 Mattan Erez

Current State of the Art in Stream*
Software Systems * Stream model as defined earlier

•  Kernel/Stream 2-level programming model
–  Good kernel scheduling
–  Decent SRF allocation and stream operation scheduling

IF SIZES KNOWN
•  Minor success otherwise

•  Sequoia
–  Extends to more than 2 levels

•  Great auto-tuning opportunities
–  Perfect knowledge of execution pipeline timing
–  Explicit communication
–  Experiments in Sequoia and StreamC

Stream processing simplifies tuning but demands
more from the software system and programmer

N

LACSS’08, Programming Models © 2008 Mattan Erez

Stream Compiler Reduces Bandwidth Demand
Compared to Caching

StreamFEM application Compute
Flux

States

Compute
Numerical

Flux

Element
Faces

Gathered
Elements

Numerical
Flux

Gather
Cell

Compute
Cell

Interior

Advance
Cell

Elements
(Current)

Elements
(New)

Read-Only Table Lookup Data
(Master Element)

Face
Geometry

Cell
Orientations

Cell
Geometry

N

LACSS’08, Programming Models © 2008 Mattan Erez

Results (Simulation)

0
16
32
48
64
80
96

112
128

0
8
16
24
32
40
48
56
64

GFLOP/s GB/s

Explicit stream architecture enables effective
resource utilization

N

LACSS’08, Programming Models © 2008 Mattan Erez

What Streams Well?

•  Data parallel in general?
•  Data – control decoupled algorithms

–  No datacontroldata dependence

•  Work in progress
–  Traversing data structures in general
–  Dynamic block sizes (data-dependent output rates)

•  Later on
–  Building data structures
–  Dynamic data structures

