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Outline 

•  Power is the number one concern 
–  A word on reliability and cost in general 

•  Parallelism isn’t enough 
–  Properties of efficient VLSI 

•  Locality, Parallelism, and Hierarchical control 
•  Threading and streaming models 
•  Memory systems 
•  Programming models 
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Supercomputer performance outpaces 
Moore’s law VLSI scaling 
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Power is the Dominant Architectural Problem 

•  Bad news: power scaling is slowing down 
–  Can’t scale Vt much in order to control leakage 

•  New technology helps  

–   can’t scale Vdd as much 

–   power doesn’t go down as it used to 

•  Energy/device decreases slower than devices/chip 

•  Power goes up if performance scaling continues 
–  For same processor architecture 

•  Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW 
–  How much for many PFLOPS? 
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There’s more to a system than power 

•  Building systems is about optimizing utility/cost 
•  Power plays an increasing role 

–  Power determines much of operating cost 
–  Power determines much of acquisition cost 

•  Cooling and facilities 

•  Reliability 
–  Likelihood of faults is growing, especially soft errors 
–  Fault-tolerance == opportunity cost 
–  Fault tolerant techniques are scalable 

•  Higher power leads to more failures (soft and hard) 
•  Bandwidth and compute density 
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How Can We Reduce Power? 

•  Compute less 
–  Use better algorithms 

•  Waste less 
–  Don’t build/use unnecessary hardware 
–  No unnecessary operations 
–  No unnecessary data movement 
–  Tuning can help – minimize power per acceptable 

performance goal 

•  Specialize more 
–  Specialized circuits are more efficient 

–  Tuning can help decide when 



Parallelism isn’t enough 

Parallelism, Locality, and efficient Hierarchical control 
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Wasting Less – Effective Performance in VLSI 

•  Parallelism 
–  10s of FPUs per chip 
–  Efficient control 

•  Locality 
–  Locality lowers power  
–  Reuse reduces  

global BW 

•  Throughput Design 
–  Throughput oriented I/O 
–  Tolerate Increasing  

on-/off-chip latencies 

•  Minimum control overhead 

65n m Chip 

$200 
1GHz 

64-bit FPU 
(to scale) 

12mm 

0.3mm 

Increasing 
power 

Decreasing 
BW 

Parallelism, locality, latency tolerance,  
bandwidth, and efficient control 

1 clock 
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Bandwidth Dominates Energy Consumption 

Operation 65nm 32nm 16nm 

64b FP Operation 38 12.5 4.2 

Read 64b from 16KB Cache 17.5 5.3 2 

Transfer 64b across chip (10mm, Rep.) 179 179 179 

Transfer 64b across chip (10mm, Cap.) 18 18 18 

Transfer 64b off chip 154 115 100 

Locality/Communication are key; 
Even then, performance is power-bound 
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Building for Locality, Parallelism, and  
Efficient Control 

registers 

on-chip memory ALUs 

interconnect control 
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Locality & parallelism are easy to first order 
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Control offers a few more options 

•  Data Level Parallelism 
–  Amortize control with SIMD 

•  Instruction Level Parallelism 
–  Amortize control with static scheduling 

•  Thread (Task) Level Parallelism 
–  Scalable 
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Data-Level Parallelism 

Instruction Sequencer 

FPU FPU FPU FPU FPU FPU FPU 

FPU FPU FPU FPU 

FPU FPU FPU FPU 

FPU FPU FPU FPU 

•  SIMD 
•  Independent 

indexing per FPU 
•  Full crossbar 

between FPUs 
•  No sub-word 

operation 
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Data- and Instruction-Level Parallelism 

•  A group of FPUs = A 
Processing Element 
(PE) =       A Cluster 

•  VLIW 
•  Hierarchical switch 

provides area 
efficiency 
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Data-, Instruction- and Thread-Level 

•  Sequencer group 
–  Each instruction 

sequencer runs 
different kernels 

Instruction Sequencer 
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Heat-map (Area per FPU) – 64 bit 

Area overhead of an 
instruction 
sequencer 

Area overhead of an 
inter-cluster switch 

Area overhead of 
intra-cluster 
switches 

64 

128 

32 

16 

4 

2 

1 

8 

1 2 4 8 32 16 64 128 
Number of clusters (DLP) 

N
um

be
r o

f F
P

U
s 

pe
r c

lu
st

er
 (I

LP
) 

1.05 
1.1 
1.2 

1.4 

2 

4 

Many reasonable hardware options for 64-bit 



N 

LACSS’08, Programming Models  © 2008 Mattan Erez 

Application Performance 
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Small performance differences  
for “good streaming” applications  
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So far so good 

•  Fairly generic with some nice results 

•  Describes just about all throughput architectures 
–  NVIDIA 
–  ATI 
–  Stream processors (Merrimac) 
–  Cell 
–  Niagara 
–  Larrabee 

•  So where are the differences? 
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Wasting Less – Effective Performance in VLSI 

•  Parallelism 
–  10s of FPUs per chip 
–  Efficient control 

•  Locality 
–  Locality lowers power  
–  Reuse reduces  

global BW 

•  Throughput Design 
–  Throughput oriented I/O 
–  Tolerate Increasing  

on-/off-chip latencies 

•  Minimum control overhead 

65n m Chip 

$200 
1GHz 

64-bit FPU 
(to scale) 

12mm 

0.3mm 

Increasing 
power 

Decreasing 
BW 

1 clock 



N 

LACSS’08, Programming Models  © 2008 Mattan Erez 

Another level of control hierarchy 

•  Different sequencer groups (threads/tasks) need to 
coordinate 

•  Typically done by a single master 
–  Scalar core (Cell, Merrimac) 
–  Thread dispatcher (NVIDIA, ATI) 
–  Program (Larrabee) 

•  Parallel program = sequence of parallel steps 
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The temporal dimension complicates things 

•  Need to hide latency 

•  Need parallelism in time 

•  How do we isolate concurrent work units? 
–  Threading 

–  Streaming 
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Threading and streaming are duals with 
respect to sharing and partitioning state 

W0 W1 W2 W3                              Wn     
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Threading and streaming are duals with 
respect to sharing and partitioning state 

•  Tradeoff in managing state 
–  Threading: partitioned registers –  

the best memory 
–  Streaming: partition local memory –  

problems with dynamic reuse 

WU0 
WU3 
WU6 

WU1 
WU4 
WU7 

Shared Cache 

To Memory    Channel To Memory    Channel 
WU0in 
WU1in 

WU63in 

WU64in 
WU1in 

WU127in 

WU0out 

WU127out 

WU1out 

SRF 

Differences in namespaces  SPs can have more 
efficient control and memory systems 



Finally, Programming Models: 
Expose what’s important to hardware 

Ignore what isn’t! 
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Hierarhical programming model view 

Physical component layer: 
power, bandwidth, performance 

Architecture layer: 
locality, parallelism, hierarchical control 

Portability and tuning layer: 
locality, parallelism, hierarchical control 

Application layer: 
numerical methods, DSLs 
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Portability and tuning layer 

•  Need massive parallelism 
–  Spatial and temporal 

•  Locality is critical 
–  Doesn’t imply streaming or threading 

•  Hierarchy is key 

•  Arbitrarily communicating threads are insane 

•  Nested bulk synchronous 
•  Atomic regions (or operations) 

Common canonical model for both  
streaming and threading! 
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Summary: 
What should and shouldn not be exposed? 

•  Should not: 
–  Inter-node communication 

•  Hierarchy targets distribution, not directly exposed 
•  Single global address space within each level 

–  Intricacies of memory system 
•  #channels, #banks, line-sizes, … 

–  Explicit synchronization 
•  Just atomics and barriers 

•  Should: 
–  Locality, parallelism, and hierarchical control 
–  Precision/accuracy 

•  Word size 
•  Fault tolerance 

–  Dynamic irregularity? 
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Conclusions 

•  Power is everything 
–  Bandwidth and performance requirements also 

•  Locality, parallelism, and hierarchical control 
–  Good proxy for power, bandwidth, and performance 

•  Convergence/divergence 
–  Throughput-architecture “dominate” 
–  Threading and streaming are duals 

•  Layered system/programming model 
–  Portability and tuning layer is key  

•  Nested bulk synchronous + atomics 
–  Target both stream and thread variants and enable opt. 

•  Don’t expose memory details, do expose locality 



N 

LACSS’08, Programming Models  © 2008 Mattan Erez 

Conclusions 

•  Power is everything 
–  Bandwidth and performance requirements also 

•  Locality, parallelism, and hierarchical control 
–  Good proxy for power, bandwidth, and performance 

•  Convergence/divergence 
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Backup 

•  Stream processors are more efficient 
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Stream Processors have minimalistic dynamic 
control 
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Decoupling enables efficient static architecture 
Separate address spaces (MEM/SRF/LRF) 
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Stream Architecture Features 

•  Exposed deep locality hierarchy  
–  explicit software control over data allocation 

and data movement 
–  flexible on-chip storage for capturing locality 
–  staging area for long-latency bulk memory transfers 

•  Exposed parallelism 
–  large number of functional units 
–  latency hiding 
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Stream Architecture Features 

•  Exposed deep locality hierarchy  
–  software managed data movement (communication) 

•  Exposed parallelism 
–  large number of functional units and latency hiding 

•  Predictable instruction latencies 
•  Optimized static scheduling 
•  High sustained performance 
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Stream Architecture Features 

•  Exposed locality hierarchy  
–  software managed data movement 

•  Exposed parallelism 
–  high sustained performance 

•  Most instructions manipulate data 
•  Minimal hardware control structures 

–  no branch prediction 
–  no out-of-order execution 
–  no trace-cache/decoded cache 
–  simple bypass networks 
–  … 

Efficient hardware  greater software responsibility 
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Current State of the Art in Stream 
Software Systems 

•  Kernel/Stream 2-level programming model 
–  Good kernel scheduling  
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Compiler Optimizes VLIW Kernel Scheduling 

Optimized schedule 

SPs decouples memory and execution 
enables static optimization and reduces hardware 
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Current State of the Art in Stream* 
Software Systems       * Stream model as defined earlier 

•  Kernel/Stream 2-level programming model 
–  Good kernel scheduling  
–  Decent SRF allocation and stream operation scheduling 

IF SIZES KNOWN 
•  Minor success otherwise 

•  Sequoia 
–  Extends to more than 2 levels 

•  Great auto-tuning opportunities 
–  Perfect knowledge of execution pipeline timing 
–  Explicit communication 
–  Experiments in Sequoia and StreamC 

Stream processing simplifies tuning but demands 
more from the software system and programmer 
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Stream Compiler Reduces Bandwidth Demand 
Compared to Caching 
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Results (Simulation) 
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Explicit stream architecture enables effective 
resource utilization 
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What Streams Well? 

•  Data parallel in general? 
•  Data – control decoupled algorithms   

–  No datacontroldata dependence 

•  Work in progress 
–  Traversing data structures in general 
–  Dynamic block sizes (data-dependent output rates) 

•  Later on 
–  Building data structures 
–  Dynamic data structures 


