Parallelism isn't Enough:

An Architect's Perspective on Build
Programming Terascale Processors
Systems

INng and
and Petascale

Mattan Erez

[SEE="=FECE

The University of Texas a:

- AusTin

LACSS 2008, Programming Models Workshop

October 15, 2008

QN Ouvutline

e Power is the number one concern
— A word on reliability and cost in general

e Parallelism isn’'t enough
— Properties of efficient VLSI

e Locality, Parallelism, and Hierarchical control
 Threading and streaming models

e Memory systems

 Programming models

ME UNIVE
TERIC AL

LACSS'08, Programming Models B YECE © 2008 Mattan Erez

Supercomputer performance outpaces
Moore’s law VLSI scaling

.
- Num. 1
1E+18 -
o TE+171 == Num. 10
g 1E+161 -~ Num.500
= 1E+151 — I1dealized VLSI ‘,,«.«.'-‘-"'"""ﬂ
ro) 1E+1 4 m ‘.‘.'.‘.(.‘ 0
Q 1E+13- ==
E 1E+12' i ‘//,—'o
g 1E+11 oo'.
(7)) 1E+10 -o
1E+9-
1E+8 rriorril
D O N DS O b A nm b A
S O O & © © 9 o o N N W N
TIIITFIINITRITSR

Bl \—'./ ECE © 2008 Mattan Erez

ING

LACSS’'08, Programming Models

A

\

10000 -
1000 -

Total Power [kW]
Efficiency [GFLOPS/kW]

1000000 - -— Power
100000 - -~ Efficiency

LACSS’'08, Programming Models

© 2008 Mattan Erez

QN Power is the Dominant Architectural Problem

 Bad news: power scaling is slowing down

— Can’'t scale Vtmuch in order to control leakage
e New technology helps

— =2 can’t scale Vdd as much
— = power doesn’'t go down as it used to

e Energy/device decreases slower than devices/chip

e Power goes up if performance scaling contfinues
— For same processor architecture

e Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW
— How much for many PFLOPSe

IN

LACSS'08, Programming Models YECE © 2008 Mattan Erez

ILPCTRICAL & COMPUTLE NG

QN There’s more to a system than power

e Building systems is about optimizing utility/cost

Power plays an increasing role
— Power determines much of operating cost

— Power determines much of acquisition cost
e Cooling and facilities

Reliability

— Likelihood of faults is growing, especially soft errors
— Favult-tolerance == opportunity cost
— Fault tolerant techniques are scalable

Higher power leads to more failures (soft and hard)
Bandwidth and compute density

LACSS’'08, Programming Models

ILPCTRICAL & COMPUTLE EEING

© 2008 Mattan Erez

QN How Can We Reduce Power?

e Compute less
— Use better algorithms

e Waste less
— Don't build/use unnecessary hardware
— NO unnecessary operations
— No unnecessary data movement
— Tuning can help — minimize power per acceptable
performance godal
e Specialize more
— Specialized circuits are more efficient
— Tuning can help decide when

THE UNIVE STIN
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

xi

Parallelism isn’t enough

Parallelism, Locality, and efficient Hierarchical control

QN Wasting Less — Effective Performance in VLSI

e Parallelism 64-bit |=|=~u_'I f— 0.3mm
— 10s of FPUs per chip (toscale) o5 m Chi
200
— Efficient conftrol 1GHa
e Locality

— Locality lowers power

— Reuse reduces
global BW

e Throughput Design
— Throughput oriented I/O

— Tolerate Increasing
on-/off-chip latencies

 Minimum control overhead

1 clock

12mm >

Parallelism, locality, latency tolerance,

bandwidth, and efficient conirol

QN Bandwidth Dominates Energy Consumption

Operation 65nm 32nm 16nm

64b FP Operation 12.5
-

Transfer 64b across chip (10mm, Rep.)

Transfer 64b across chip (10mm, Cap.) 18 18 18

Transfer 64b off chip 154

Locality/Communication are key;
Even then, performance is power-bound

Building for Locality, Parallelism, and
QN Efficient Control

ALUS on-chip memory

AR /A

AR AR

reim’rers

LACSS'08, Programming Models L = l ECE © 2008 Mattan Erez

control InNferconnect

LACSS'08, Programming Models E : \'gECE © 2008 Mattan Erez

QN Control offers a few more options

e Data Level Parallelism
— Amortize control with SIMD

e Instruction Level Parallelism
— Amortize control with stafic scheduling

 Thread (Task) Level Parallelism
— Scalable

THE UNIVE STIN
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

e xi

Q Data-Level Parallelism

e SIMD

Instruction Sequencer ° Independen’r
indexing per FPU

e Full crossbar
between FPUs

e No sub-word
operation

UNIVE
TERIC AL

LACSS'08, Programming Models = YECE © 2008 Mattan Erez

QN Data- and Instruction-Level Parallelism

e A group of FPUs = A

Instruction Sequencer Processing Element
= o= ——— (PE) = A Cluster
FPU e VLIW

e Hierarchical switch
provides ared
efficiency

Epu —

FPUY =t I FPU

LACSS’08, Programming Models A Y ECE © 2008 Mattan Erez

NG

N

Data-, Instruction- and Thread-Level

e Sequencer group

Instruction Sequencer — Each instruction
seqguencer runs
different kernels

Instruction Sequencer

ME UNIVE
TRIC AL

LACSS'08, Programming Models B YECE © 2008 Mattan Erez

QM Heat-map (Area per FPU) - 64 bit

Area overhead of
intra-cluster
switches

1.4

1.2

nn 11
-1.05

Number of FPUs per cluster (ILP)

32
Number of clusters (DLP)
Area overhead of an

Many reasonable hardware options for é64-bit

QN Application Performance

()]

= 1'12 _
S 0.8
o 0.6
£ 04
o 0.2 7
n'd 0 1

CONV2D

l all_ SEQ_busy [] some_SEQ_busy MEM busy
[]no_SEQ_busy MEM_busy Il some_SEQ_busy MEM idle

Small performance differences

for “good streaming” applications

QN So far so good

e Fairly generic with some nice results

e Describes just about all throughput architectures
— NVIDIA
— ATl
— Stfream processors (Merrimac)
— Cell
— Niagara
— Larrabee

e SO where are the differences?¢

LACSS’08, Programming Models B Y ECE © 2008 Mattan Erez

NG

QN Wasting Less — Effective Performance in VLSI
64-bit FPU_.l = 0.3mm

e Parallelism

— 10s of FPUs per chip (teseale)

— Efficient conftrol
e Locality

— Locality lowers power

— Reuse reduces
global BW

e Throughput Design

— Throughput oriented I/O

— Tolerate Increasing

on-/off-chip latencies

 Minimum control overhead

LACSS’'08, Programming Models

THME UNIVERSITY OF TEXAS AT AUSTIN
ILPCTRICAL & COMPUTEE ENGINERERING

12mm

© 2008 Mattan Erez

65nm Chip

$200
1GHz

1 clock

QN Another level of control hierarchy

e Different sequencer groups (threads/tasks) need to
coordinate

e Typically done by a single master
— Scalar core (Cell, Merrimac)
— Thread dispatcher (NVIDIA, ATI)
— Program (Larrabee)

 Parallel program = sequence of parallel steps

LACSS'08, Programming Models , = ' ECE © 2008 Mattan Erez

e KING

QN The temporal dimension complicates things

e Need to hide latency
e Need parallelism in fime

e How do we isolate concurrent work unitse
— Threading
— Streaming

THE UNIVE STIN
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

xi

Threading and streaming are duals with
QN respect to sharing and partitioning state

W0 W1 W2W3 ecceee Wn

THE UNIVE
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

e

Threading and streaming are duals with
QN respect to sharing and partitioning state

e Tradeoff in managing state

— Threading: partitioned registers —
the best memory

— Streaming: partition local memory -
problems with. dynamic reuse
To Memory | Channel

Shared Cache

Differences in namespaces - SPs can have more
efficient control and memory systems

Finally, Programming Models:
Expose what's important to hardware

lgnore what isn't!

Application layer:
. numerical methods, DSLs)
(")
Portability and tuning layer:

kIoc:culi’ry, parallelism, hierarchical con’rrol)

é)
Architecture layer:

kIoc:culi’ry, parallelism, hierarchical con’rrol)

4)
Physical component layer:

_ power, bandwidth, performance)

LACSS’08, Programming Models E 1 = léECE © 2008 Maftan Erez

QN Portability and tuning layer

e Need massive parallelism
— Spatial and temporal

e Locality is critical
— Doesn't imply streaming or threading

e Hierarchy is key
e Arbitrarily communicating threads are insane

e Nested bulk synchronous
e Atomic regions (or operations)

Common canonical model for both
streaming and threading!

Summary:
What should and shouldn not be exposed?

e Should not:

— Inter-node communication
e Hierarchy targets distribution, not directly exposed
e Single global address space within each level

— Intricacies of memory system
e #channels, #banks, line-sizes, ...

— Explicit synchronization
e Just atomics and barriers

e Should:

— Locality, parallelism, and hierarchical control

— Precision/accuracy
e Word size
e Fault folerance

— Dynamic irregularitye ...
LACSS'08, Programming Models | ECE © 2008 Mattan Erez

—
TLRCTRICAL & COMPUTE

QN Conclusions

e Power is everything
— Bandwidth and performance requirements also

e Locality, parallelism, and hierarchical conftrol
— Good proxy for power, bandwidth, and performance

e Convergence/divergence
— Throughput-architecture “dominate”
— Threading and streaming are duals

e Layered system/programming model
— Portability and tuning layer is key ©

 Nested bulk synchronous + atomics
— Target both stream and thread variants and enable opt.

* Don’t expose memory details, do expose locality
LACSS'08, Programming Models \—'./ECE © 2008 Mattan Erez

ILPCTRICAL &

QN Conclusions

e Power is everything
— Bandwidth and performance requirements also

e Locality, parallelism, and hierarchical conftrol
— Good proxy for power, bandwidth, and performance

e Convergence/divergence
— Throughput-architecture “dominate”
— Threading and streaming are duals

e Layered system/programming model
— Portability and tuning layer is key ©

 Nested bulk synchronous + atomics
— Target both stream and thread variants and enable opt.

* Don’t expose memory details, do expose locality
LACSS'08, Programming Models \—'./ECE © 2008 Mattan Erez

ILPCTRICAL &

QN Backup

e Stream processors are more efficient

THE UNIVE STIN
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

xi

QN Stream Processors have minimalistic dynamic
' control

- Static latencies =

<+— Unpredictable I/O Latencies

=)
A
>
<
o3
Q

=

2

UDJIMS Jajsn|o

o o B ULl]}

suid O/|

SOUDJIMS AIOWISW PUD JalsN|D-I1alu|

UDJIMS Jajsn|o

Jubq WVid

0
Q
0
=2
()
O
Q
=
=

Decoupling enables efficient static architecture

Separate address spaces (MEM/SRF/LRF)

QN Stream Architecture Features

e Exposed deep locality hierarchy

— explicit software control over data allocation
and data movement

— flexible on-chip storage for capturing locality
— staging area for long-latency bulk memory transfers

e Exposed parallelism

— large number of functional units
— latency hiding

THE UNIVE STIN
TRIC AL

LACSS’08, Programming Models = ' ECE © 2008 Mattan Erez

e xi

QN Stream Architecture Features

e Exposed deep locality hierarchy
— software managed data movement (communication)

e Exposed parallelism
— large number of functional units and latency hiding

e Predictable instruction latencies
e Optimized static scheduling
e High sustained performance

LACSS’08, Programming Models B¥ Y ECE © 2008 Mattan Erez

NG

QNﬁ Stream Architecture Features

e Exposed locality hierarchy
e Exposed parallelism

 Most instructions manipulate data

e Minimal hardware conftrol structures
— No branch prediction
— no out-of-order execution
— no trace-cache/decoded cache
— simple bypass networks

Efficient hardware - greater software responsibility

QN Current State of the Art in Stream
) Software Systems

e Kernel/Stream 2-level programming model
— Good kernel scheduling

LACSS’08, Programming Models L= l ECE © 2008 Mattan Erez

g

QN Compiler Optimizes VLIW Kernel Scheduling

mOp’rimized schedule

- = =]

0
)
3

3N
X
!:x'_'_
b

u

|

s

LT

il

]

il

T

=

SRF Lane (64KB)

LS

SPs decouples memory and execution
enables static optimization and reduces hardware

Current State of the Art in Stream*
% Software Sysfems * Stream model as defined earlier

e Kernel/Stream 2-level programming model
— Good kernel scheduling

— Decent SRF allocation and stream operation scheduling
IF SIZES KNOWN

* Minor success otherwise
e Sequoia
— Extends to more than 2 levels
o Great auto-tuning opportunities
— Perfect knowledge of execution pipeline tfiming

— Explicit communication
— Experiments in Sequoia and StreamC

Stream processing simplifies tuning but demands

more from the software system and programmer

Stream Compiler Reduces Bandwidth Demand
QM Compared to Caching

Read-Only Table Lookup Data
H d = nl= "\

StreamFEM application

Elements

[
I

LACSS’08, Programming Models L= l ECE © 2008 Mattan Erez

g

QN Results (Simulation)

B GFLOP/s O GB/s

Explicit stream architecture enables effective
resource utilization

QN What Streams Well?

 Data parallel in generale

 Data — confrol decoupled algorithms

— No data—>control->data dependence
e Work in progress

— Traversing data structures in general

— Dynamic block sizes (data-dependent output rates)
e Later on

— Building data structures
— Dynamic data structures

LACSS’08, Programming Models Y ECE © 2008 Mattan Erez

e NG

