Sequoia

Programming the Memory Hierarchy

Kayvon Fatahalian Timothy J. Knight Mike Houston Mattan Erez
Daniel Reiter Horn Larkhoon Leem Ji Young Park Manman Ren
Alex Aiken William J. Dally Pat Hanrahan John Clark

Stanford University

This Talk

* An brief overview of Sequoia

* What it is
- Overview of Sequoia implementation

* Port of Sequoia to Roadrunner
- Status of port and some initial benchmarks

* Plan
- Future Sequoia work

Sequoia

* Language

- Stream programming for deep memory
hierarchies

* Goals: Performance & Portability

- Expose abstract memory hierarchy to
programmer

* Implementation

- Benchmarks run well on many multi-level
machines

- Cell, PCs, clusters of PCs, cluster of PS3s, + disk

Key challenge in high performance
programming is:

communication
(not parallelism)

Latency
Bandwidth

Consider Roadrunner

Computation Communication
» Cluster of 3264 nodes Infiniband
= ... a node has 2 chips Infiniband
= ... a chip has 2 Opterons Shared memory
= ... an Opteron has a Cell DACS
" .. a Cell has 8 SPEs Cell API

How do you program a petaflop
supercomputer?

Communication: Problem #1

= Performance

- Roadrunner has plenty of compute power

- The problem is getting the data to the compute
units

- Bandwidth is good, latency is terrible
- (At least) 5 levels of memory hierarchy

* Portability

- Moving data is done very differently at different
levels

- MPI, DACs, Cell API, ...

- Port to a different machine => huge rewrite
- Different protocols for communication

Sequoia’s goals
* Performance and Portability

* Program to an abstract memory hierarchy
- Explicit parallelism

- Explicit, but abstract, communication
- “move this data from here to there”

- Large bulk transfers

* Compiler/run-time system

- Instantiate program to a particular memory hierarchy

- Take care of details of communication protocols, memory
sizes, etc.

The sequoia implementation

* Three pieces:
* Compiler
* Runtime system

= Autotuner

Compiler

= Sequoia compilation works on hierarchical
programs

* Many “standard” optimizations
- But done at all levels of the hierarchy
- Greatly increases leverage of optimization

- E.g., copy elimination near the root removes not
one instruction, but thousands-millions

" Input: Sequoia program
- Sequoia source file
- Mapping

Sequoia tasks

= Special functions called tasks are the
building blocks of Sequoia programs

task matmul::leaf(in float A[M][T],

in float B[T] [N],
inout float C[M] [N])

for (int i=0; i<M; i++)
for (int j=0; j<N; Jj++)
for (int k=0; k<T; k++)
C[i][J] += A[i][k] * B[k][3J];

Read-only parameters M, N, T give sizes of

multidimensional arrays when task is
called.

How mapping works

Sequoia task
definitions .
(parameterized) Task instances

matmul_node_inst

variant = inner
P=256 Q=256 R=256

node level

matmul::leaf

S : mul_L2_inst
G variant = inner
Compiler P=32 Q=32 R=32

Mapping specification

instance {
name = matmul node_inst
variant = inner

_ matmul_L1_inst
Cunable 226, Grse, Re256 variant = [eaf

}

instance { L1 leVEI

name = matmul L2 inst

variant = inner

runs_at = L2 cache

tunable P=32, Q=32, R=32
}

instance {
name = matmul L1 inst
variant = leaf
runs_at = L1_cache

}

Runtime system

* A runtime implements one memory level
- Simple, portable API interface
- Handles naming, synchronization, communication
- For example Cell runtime abstracts DMA

* A number of existing implementations
- Cell, disk, PC, clusters of PCs, disk, DACS, ...

* Runtimes are composable

- Build runtimes for complex machines from
runtimes for each memory level

= Compiler target

Graphical runtime representation

Memory Level i+1
CPU Level i+1

:Runtime

|
|
|
Memory Level i Memory Level i Memory Level i
Child 1 Child N
CPU Leveli CPU Leveli

Child N

CPU Leveli
Child 1

Autotuner

" Many parameters to tune
- Sequoia codes parameterized by tunables

- Abstract away from machine particulars
- E.g., memory sizes

* The tuning framework sets these parameters
- Search-based
- Programmer defines the search space

- Bottom line: The Autotuner is a big win
- Never worse than hand tuning (and much easier)
- Often better (up to 15% in experiments)

Target machines

= Scalar

- 2.4 GHz Intel Pentium4 Xeon,
1GB

= 8-way SMP

- 4 dual-core 2.66GHz Intel P4
Xeons, 8GB

= Disk
- 2.4 GHz Intel P4, 160GB disk,
~50MB/s from disk

= Cluster

- 16, Intel 2.4GHz P4 Xeons, 1GB/

node, Infiniband interconnect
(780MB/s)

= Cell

- 3.2 GHz IBM Cell blade (1 Cell -

8 SPE), 1GB
= PS3

- 3.2 GHz Cell in Sony Playstation

3 (6 SPE), 256MB (160MB
usable)

Cluster of SMPs

- Four 2-way, 3.16GHz Intel
Pentium 4 Xeons connected
via GigE (80MB/s peak)

Disk + PS3

- Sony Playstation 3 bringing
data from disk (~30MB/s)

Cluster of PS3s

- Two Sony Playstation 3’s
connected via Gige (60MB/s
peak)

Port of Sequoia to Roadrunner

"Ported existing Sequoia runtimes:
cluster and Cell

*Built new DaCS runtime

*Composition DaCS-Cell runtime

*Current status of port:
-DaCS runtime works

-Currently adding compostion: cluster-
DaCS$S

-Developing benchmarks for Roadrunner
runtime

Some initial benchmarks

= Matrixmult

- 4K x 4K matrices
- AB =C

" Gravity
- 8192 particles

- Particle-Particle stellar N-body simulation for
100 time steps

= Conv2D
- 4096 x 8192 input signal
- Convolution of 5x5 filter

Some initial benchmarks

= Cell runtime timings

- Matrixmult: 112 Gflop/s
- Gravity: 97.9 Gflop/s
- Conv2D: 71.6 Gflop/s

= Opteron reference timings
- Matrixmult: .019 Gflop/s
- Gravity: .68 Gflop/s
- Conv2D: .4 Gflop/s

DaCS-Cell runtime latency

= DaCS-Cell runtime performance of matrixmult
- Opteron-Cell transfer latency
- ~63 Gflop/s

- ~40% of time spent in transfer from Opteron to
PPU

= Cell runtime performance of matrixmult
- No Opteron-Cell latency
- 112 Gflop/s

- Negligible time spent in transfer

= Computation / Communication ratio
- Effected by the size of the matrices
- As matrix size increases ratio improves

Plans: Roadrunner port

* Extend Sequoia support to full machine
= Develop solid benchmarks

* Collaborate with interested applications
groups with time on full machine

Plans: Sequoia in general

* Goal: run on everything

* Currently starting Nvidia GPU port

* Language extensions to support
dynamic, irregular computations

Questions?

http://sequoia.stanford.edu

Hierarchical memory

= Abstract machines as trees of memories

Dual-core PC

Similar to:

Parallel Memory Hierarchy Model
(Alpern et al.)

Sequoia Benchmarks

Linear Algebra

Conv2D

FFT3D
Gravity

HMMER

SUmb

Blas Level 1 SAXPY, Level 2 SGEMV, and Level 3
SGEMM benchmarks

2D single precision convolution with 9x9 support
(non-periodic boundary constraints)

Complex single precision FFT

100 time steps of N-body stellar dynamics
simulation (N:2) single precision

Fuzzy protein string matching using HMM
evaluation (Horn et al. SC2005 paper)

Stanford University multi-block

Best available implementations used as leaf task

Best Known Implementations

= HMMer
- ATl X1900XT:

- Sequoia Cell:
- Sequoia SMP:

" Gravity
- Grape-6A:

- Sequoia Cell:
- Sequoia PS3:

9.4 GFlop/s
(Horn et al. 2005)

12 GFlop/s
11 GFlop/s

2 billion interactions/s
(Fukushige et al. 2005)

4 billion interactions/s
3 billion interactions/s

Out-of-core Processing

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Scalar

0.3

1.1

6.9

1.9

0.7

4.8

0.9

Disk

0.007

0.04

5.5

0.6

0.05

3.7

0.9

Sequoia’s goals
* Portable, memory hierarchy aware programs

* Program to an abstract memory hierarchy
- Explicit parallelism

- Explicit, but abstract, communication
- “move this data from here to there”

- Large bulk transfers

* Compiler/run-time system

- Instantiate program to a particular memory hierarchy

- Take care of details of communication protocols, memory
sizes, etc.

Out-of-core Processing

Scalar Disk
SAXPY 0.3 0.007
SGEMV 1.1 0.04
CONV2D 1.9 0.6
FFT3D 0.7 0.05

Some applications have
enough computational
intensity to run from disk
with little slowdown

Cluster vs. PS3

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Cluster

4.9

12

91

24

5.5

68

12

PS3

3.1

10

94

62

31

71

71

Cost

Cluster: $150,000

PS3:

$499

Percentage of Runtime

Multi-Runtime Utilization

wem Idle waiting on Xfer (M2-M1) WS]dle waiting on Xfer (M1-M0)

; Overhead (M1-M0)
Overhead (M2-M1) s | eaf task execution (MO)

SAXPY SGEMV SGEMM CONV2D FFT3D GRAVITY HMMER

Cluster of SMPs | Disk + PS3 | Cluster of PS3s

Percentage of Runtime

Cluster of PS3 Issues

Idle waiting on Xfer M2-M1) " 1dle waiting on Xfer (M1-MO0)

; Overhead (M1-M0)
Overhead (M2-M1) mm | eaf task execution (MO)

SAXPY SGEMV SGEMM CONV2D FFT3D GRAVITY HMMER

Cluster of SMPs | Disk + PS3 | Cluster of PS3s

Percentage of Runtime

~ SAXPY SGEMV ~SGEMM CONV2D FFT3D

SMP | Disk | Cluster | Cell | PS3

System Utilization

= Jdle waiting on Xfer
Runtime Overhead
- | eaf task execution

GRAVITY HMMER

Resource Utilization - IBM Cell

mmm Bandwidth utilization
mmm Compute utilization

100

(@)

Resource Utilization (%)

SAXPY SGEMV FFT3D SGEMM CONV2D GRAVITY

Single Runtime Configurations -

GFlop/s

Scalar
SAXPY 0.3
SGEMV 1.1
SGEMM 6.9
CONV2D 1.9
FFT3D 0.7
GRAVITY 4.8
HMMER 0.9

SMP

0.7

1.7

45

7.8

3.9

40

11

Disk

0.007

0.04

SR

0.6

0.05

3.7

0.9

Cluster

4.9

12

91

24

99

68

12

Cell

55

12

119

85

o4

97

12

PS3

3.1

10

94

62

31

71

7.1

Cluster of PS3 Issues

Idle waiting on Xfer M2-M1) " 1dle waiting on Xfer (M1-M0)

Overhead (M1-M0)
Overhead -M1
(M2-M1) e | eaf task execution (MO)

SAXPY SGEMV

| o B

Percentage of Runtime

Cluster of PS3s | PS3

Multi-Runtime Configurations -

GFlop/s

SAXPY
SGEMV
SGEMM
CONV2D
FFT3D
GRAVITY

HMMER

Cluster-SMP

1.9

4.4

48

4.8

1.1

50

14

Disk+PS3

0.004

0.014

3.7

0.48

0.05

66

8.3

PS3 Cluster

5.3

15

30

19

0.36

119

13

SMP vs. Cluster of SMP

Cluster of SMP

SMPs
SAXPY 1.9 0.7
SGEMV 4.4 1.7
SGEMM 48 45
CONV2D 4.8 7.8
FFT3D 1.1 3.9
GRAVITY 50 40

HMMER 14 11

SMP vs. Cluster of SMP

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Cluster of SMP

SMPs

1.9 0.7
4.4 1l 1/
4.8 7.8
1.1 3.9

Same number of total
pProcessors

Compute limited applications
agnostic to interconnect

Disk+PS3 Comparison

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Disk+PS3

0.004

0.014

3.7

0.48

0.05

66

8.3

PS3

3.1

10

94

62

31

71

7.1

Disk+PS3 Comparison

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Disk+PS3 PS3

0.004 3.1
0.014 10
3.7 94
0.48 62

Some applications have
enough computational
intensity to run from disk
with little slowdown

Disk+PS3 Comparison

SAXPY

SGEMV

SGEMM

CONV2D

FFT3D

GRAVITY

HMMER

Disk+PS3

0.004

0.014

3.7

0.48

0.05

66

8.3

PS3

3.1

10

94

62

31

71

7.1

We can’t use large
enough blocks in
memory to hide latency

PS3 Cluster as a compute platform?

PS3 Cluster PS3

SAXPY 5.3 3.1
SGEMV 15 10
SGEMM 30 94
CONV2D 19 62
FFT3D 0.36 31
GRAVITY 119 71

HMMER 13 7.1

Avoiding latency stalls

= Exploit locality to minimize number of stalls
- Example: Blocking / tiling

Localize

. compute

Localize

|HIHHHHHIH||

Avoiding latency stalls

1. Prefetch batch of data
2. Compute on data (avoiding stalls)
3. Initiate write of results

... Then compute on next batch (which should be
loaded)

write output 0

compute 1
read input 2

time

write output 1

compute 2
read input 3

write output 2

compute 3

read input 4

Exploit locality

* Compute > bandwidth, else execution stalls

Write output 0

compute 1

Read input 2

time stall

Write output 1
compute

Read input 3
stall

Locality in programming languages

" Local (private) vs. global (remote) addresses
- UPC, Titanium

* Domain distributions (map array elements to
location)

- HPF, UPC, ZPL
- Adopted by DARPA HPCS: X10, Fortress, Chapel

Focus on communication between nodes
Ignore hierarchy within a node

Locality in programming languages

= Streams and kernels
- Stream data off chip. Kernel data on chip.

- StreamC/KernelC, Brook
- GPU shading (Cg, HLSL)

Architecture specific
Only represent two levels

Hierarchy-aware models

= Cache obliviousness (recursion)

= Space-limited procedures (Alpern et al.)

Programming methodologies, not
programming environments

Hierarchical memory in Sequoia

Hierarchical memory

= Abstract machines as trees of memories

Dual-core PC 4 node cluster of PCs

/\

Aggregate cluster memory

(virtual level)

T

Node Node Node Node
memory il memory [l memory |l memory

L2 cache L2 cache @ L2 cache @ L2 cache

L1 cache L1 cache

L1 cache

L1 cache @ L1 cache @ L1 cache

ALUs ALUs

ALUs ALUs

ALUs ALUs

Hierarchical memory

Single Cell blade

IIIIIIIIEHIHHHHHIIIIIIII

LS §ELSHgLSYgLSHLSQHELSHLS QLS

Hierarchical memory

Dual Cell blade

>
.
o
£
)
S
c
©
=

(No memory affinity modeled)

Hierarchical memory

System with a GPU

GPU memory

tex j| tex j| tex j§ tex § tex j tex
L1 L1 L1 § L1

ALUsBALUsBALUs

Blocked matrix multiplicatio
C+=AxB

void matmul L1(int M, int N, int T,

float* A,
float* B, matmul_L1
float* C) 32x32

{ matrix mult

for (int i=0; i<M; i++)

for (int j=0; j<N; J++)
C[i][3] += A[i][k] * B[k][]]~

Blocked matrix multiplicatio

void matmul L2(int M, int N, int T,

float* A,
float* B,
float* C)

Perform series of L1 matrix
multiplications.

matmul_L1 matmul_L1
32x32 32x32

C+=AxB

matmul_L2
256x256
matrix mult

matmul_L1
32x32

. 512 L1 calls ...

matmul_L1
32x32

Blocked matrix multiplicatio
C+=AxB

void matmul(int M, int N, int T,

float* A,
float* B, matmul
{ float* C) large matrix mult
Perform series of L2 matrix
multiplications.
}

matmul_L2
256x256

- [.. i IR

matmul_L2
256x256

matmul_L1

matmul_L1

matmul_L1 matmul_L1

32x32

32x32
matrix mult matrix mult matrix mult

B 6 [o o (o) (i

32x32

matmul_L1
32x32
PP matrix mult

matmul_L1 matmul_L1 matmul_L1

32x32 32x32 32x32 32x32
matrix mult matrix mult matrix mult BYY matrix mult
E R B E EEIE]

Sequoia tasks

Sequoia tasks

* Task arguments and temporaries define a
working set

* Task working set resident at single location
in abstract machine tree

task matmul::leaf(in float A[M][T],
in float B[T] [N],
inout float C[M] [N])

for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)
C[i][3j] += A[il[k] * BI[k][3];

Task hierarchies

task matmul::inner(in float A[M][T],
in float B[T] [N],
inout float C[M] [N])

Calling task: matmul::inner
Located at level X

{
tunable int P, Q, R;

mappar (int i=0 to M/P,
int j=0 to N/R) {
mapseq(int k=0 to T/Q) {

matmul (A[P*i:P* (i+1l) ;P] [Q*k:Q* (k+1) ;Q],
B[Q*k:Q0* (k+1) ;Q] [R*]:R* (J+1) /R],
C[P*i:P* (i+1l) ;P] [R*j:R*(j+1) ;R]) ;

}
}

task matmul::leaf(in float A[M] [T],
in float B[T] [N],
inout float C[M] [N])

for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)
C[i][J] += A[i][k] * B[k][3];

Callee task:
matmul::leaf

Located at level Y

Task hierarchies

task matmul::inner(in float A[M][T],
in float B[T] [N],
inout float C[M] [N])

{
tunable int P, Q, R;

Recursively call matmul task on
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

task matmul::leaf(in float A[M] [T],
in float B[T] [N],
inout float C[M] [N])

for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)
Cl[i][3] += A[i]l[k] * B[k][]];

Task hierarchies

task matmul::inner(in float A[M][T],
in float B[T] [N],
inout float C[M] [N])

{
tunable int P, Q, R;

mappar (int i=0 to M/P, Variant call graph
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul (A[P*i:P* (i+1) ;P] [Q*k:Q* (k+1);Q],
B[QO*k:Q* (k+1) ;Q] [R*j:R* (J+1) ;R],
C[P*i:P* (i+1) ;P] [R*j:R* (j+1);R]);

}
} matmul::leaf

}

task matmul::leaf(in float A[M] [T],
in float B[T] [N],
inout float C[M] [N])

for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)
C[i][J] += A[i][k] * B[k][3];

Task hierarchies

task matmul::inner(in float A[M][T],
in float B[T] [N],
inout float C[M] [N])

{
tunable int P, Q, R;

mappar (int i=0 to M/P,
int j=0 to N/R) {
mapseq(int k=0 to T/Q) {

matmul (A[P*1i:P* (i+1l) ;P] [Q*k:Q* (k+1) ;Q],

B[Q*k:Q* (k+1) ;Q] [R*J:R*(j+1) ;R],
C[P*i:P*(i+1) ;P] [R*j:R* (j+1);R]);

* Tasks express multiple levels of parallelism

Leaf variants

* Be practical: Can use platform-specific
k%’a'glemlaimul: :leaf (in float A[M] [T],

in float B[T] [N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0;k<T; k++)
C[i][3] += A[i][k] * B[k][]]:

task matmul::leaf cblas(in float A[M] [T],
in float B[T] [N],
inout float C[M][N])
{
cblas sgemm(A, M, T, B, T, N, C, M, N);
}

Summary: Sequoia tasks

* Single abstraction for
- Isolation / parallelism
- Explicit communication / working sets
- Expressing locality

* Sequoia programs describe hierarchies of
tasks
- Mapped onto memory hierarchy
- Parameterized for portability

Mapping tasks to machines

Task mapping specification

instance ({
name = matmul node inst
task = matmul
variant = inner .
runs_at = main memory PC task instances
tunable P=256, Q=256, R=256

calls = matmul L2 inst matmul_node_inst

} variant = inner
P=256 Q=256 R=256
instance ({ node level
name = matmul L2 inst
task = matmul _L2 1inst
variant = inner variant = inner

P=32 Q=32 R=32
L2 level

runs_at = L2 cache
tunable P=32, Q=32, R=32
calls = matmul L1 inst

} matmul_L1_inst
variant = [eaf

instance { L1 level
name = matmul L1 inst
task = matmul
variant = leaf
runs_at = L1 _cache

Specializing matmul

* |[nstances of tasks placed at each memory

level
matmul::inner .
M=N=T=1024 main
P=Q=R=256
memory
matmul:: matmul:: = matmul::
inner ota inner
M=N=T=256 Bl M=N=T=256 EUDPIEH < M=N=T=256 L2 CaChe
matmul::leaf § matmul::leaf Bk VA s s Matmul::leaf L1 CaChe

M=N=T=32 EISEL o M=N=T=32

Task instances: Cell

Sequoia task
definitions

arameterized
(P) Cell task instances

(not parameterized)

matmul_node_inst

variant = inner
P=128 Q=64 R=128

node level

matmul::leaf

»EA»
Compiler matmul_LS_inst

Cell mapping variant = [eaf
~specification LS level

name = matmul node inst

variant = inner

runs_at = main_memory

tunable P=128, Q=64, R=128
}

instance {
name = matmul LS inst
variant = leaf
runs_at = LS_cache

}

Results

Early results

* We have a Sequoia compiler + runtime
systems ported to Cell and a cluster of PCs

= Static compiler optimizations (bulk operation
IR)

Copy elimination

DMA transfer coalescing
Operation hoisting

Array allocation / packing
Scheduling (tasks and DMAs)

“Compilation for Explicitly Managed
Memories”

Knight et al. To appear in PPOPP ’07

Early results

» Scientific computing benchmarks

Linear Algebra Blas Level 1 SAXPY, Level 2 SGEMV, and Level 3
SGEMM benchmarks

IterConv2D Iterative 2D convolution with 9x9 support (non-
periodic boundary constraints)

FFT3D 256; complex FFT

Gravity 100 time steps of N-body stellar dynamics
HMMER simulation

Fuzzy protein string matching using HMM
evaluation

(ClawHMMer: Horn et al. SC2005)

Utilization

HEl Idle waiting on memory/network
Bl Sequoia overhead
BN | eaf task computation

.S 100_] — — —]
5

5

O 80

4

)

8B 60+

o

e

Y

O -

)

on

©

T 2

S []
O

[l =4 N

o l
o 0_.

%‘:&, cf’ g@ @ & 4&&‘3&

Execution on a Cell blade (left bars) and 16 node cluster (right
bars)

Utilization

HEl |[dle waiting on memory/network
BN Sequoia overhead
I | eaf task computation

[

S

(<=
|

o)
(=]
|

A
o
|

SN
(=]
]

peak DRAM bandwidth

Percentage of total execution
|

Bandwidth bound apps
achieve over 90% of

[]

l

S
] L

N ,@I,,)QI 1
E @@&@ £ & &

Execution on a Cell blade

Utilization

HEl Idle waiting on memory/network
Bl Sequoia overhead
BN | eaf task computation

C 1000 —
6 ' i . =
- 1

5

: o i

>

)

g 60 -

9 .

(V.

O -

)

)

©

T 2

o

O

-

o

(a1 0 I

| | | | | | |
2 > o4
& ﬁ‘s %65@ %90@ & gf& &‘s&
¥
Execution on a Cell blade (left bars) and 16 node cluster (right
bars)

Performance

SPE scaling on 2.4Ghz Scaling on P4 cluster with
Dual-Cell blade Infiniband interconnect

-0+ SAXPY --0-- SAXPY
--%- SGEMV - = SGEMV
—x— SGEMM . —— SGEMM
—— IterConv2D P) —— IterConv2D
- 4- FFT3D , o - 4a- FFT3D
--o-- Gravity :

-o--- HMMER

Number of SPEs Number of nodes

Performance: GFLOP/sec

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Performance: GFLOP/sec

(single precision floating point)

o8

- Smgle Cell >5=16 node cluster OI P4’s

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Performance: GFLOP/sec

(single precision floating point)

= Results on Cell on-par or better than best-
known implementations on any architecture

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Performance: GFLOP/sec

(single precision floating point)

FFT3D : 4

* FFT3D on par with best-known Cell
implementation

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Performance: GFLOP/sec

(single precision floating point)

53. 12,0

- Grav1ty outperlorms custom KJ'CS

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Performance: GFLOP/sec

(single precision floating point)

- HﬁﬁE! ou!per orms Horn et al.’s GPU

implementation from SC05

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per

Sequoia portability

* No Sequoia source level modifications except
for FFT3D*

- Changed task parameters
- Ported leaf task implementations

" Cluster - Cell port (or vice-versa) took 1-2
days

* FFT3D used a different variant on
Cell

Sequoia limitations

= Require explicit declaration of working sets
- Programmer must know what to transfer
- Some irregular applications present problems

* Manual task mapping
- Understand which parts can be automated

Sequoia summary

* Enforce structuring already required for
performance as integral part of programming
model

* Make these hand optimizations portable and
easier to perform

Sequoia summary

* Problem:

- Deep memory hierarchies pose perf. programming
challenge

- Memory hierarchy different for different machines

= Solution: Abstract hierarchical memory in

programming model

- Program the memory hierarchy explicitly
- Expose properties that effect performance

= Approach: Express hierarchies of tasks
- Execute in local address space
- Call-by-value-result semantics exposes communication
- Parameterized for portability

